Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2012_7_2_a5, author = {S. Ibrahim and A. Lyaghfouri}, title = {Blow-up {Solutions} of {Quasilinear} {Hyperbolic} {Equations} {With} {Critical} {Sobolev} {Exponent}}, journal = {Mathematical modelling of natural phenomena}, pages = {66--76}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2012}, doi = {10.1051/mmnp/20127206}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127206/} }
TY - JOUR AU - S. Ibrahim AU - A. Lyaghfouri TI - Blow-up Solutions of Quasilinear Hyperbolic Equations With Critical Sobolev Exponent JO - Mathematical modelling of natural phenomena PY - 2012 SP - 66 EP - 76 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127206/ DO - 10.1051/mmnp/20127206 LA - en ID - MMNP_2012_7_2_a5 ER -
%0 Journal Article %A S. Ibrahim %A A. Lyaghfouri %T Blow-up Solutions of Quasilinear Hyperbolic Equations With Critical Sobolev Exponent %J Mathematical modelling of natural phenomena %D 2012 %P 66-76 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127206/ %R 10.1051/mmnp/20127206 %G en %F MMNP_2012_7_2_a5
S. Ibrahim; A. Lyaghfouri. Blow-up Solutions of Quasilinear Hyperbolic Equations With Critical Sobolev Exponent. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 66-76. doi : 10.1051/mmnp/20127206. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127206/
[1] M. Agueh. A new ODE approach to sharp Sobolev inequalities. Nonlinear Analysis Research Trends. Nova Science Publishers, Inc. Editor : Inès N. Roux, pp. 1–13 (2008).
[2] T. Aubin. Problème isopérimétrique et espaces de Sobolev, J. Differential Geometry. 11, pp. 573–598 (1976).
[3] C. Chen, H. Yao, L. Shao. Global Existence, Uniqueness, and Asymptotic Behavior of Solution for p-Laplacian Type Wave Equation. Journal of Inequalities and Applications Volume 2010, Article ID 216760, 15 pages.
[4] V.A. Galaktionov, S.I. Pohozaev. Blow-up and critical exponents for nonlinear hyperbolic equations. Nonlinear Analysis 53, pp. 453–466 (2003).
[5] G. Hongjun, Z. Hui. Global nonexistence of the solutions for a nonlinear wave equation with the q-Laplacian operator. J. Partial Diff. Eqs. 20 pp. 71–79(2007) .
[6] S. Ibrahim, N. Masmoudi, K. Nakanishi. Scattering threshold for the focusing nonlinear Klein-Gordon equation. Analysis and PDE 4, No. 3, pp. 405–460, 2011.
[7] C. E. Kenig, F. Merle. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166, No. 3, pp. 645–675 (2006).
[8] C. E. Kenig, F. Merle. Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201, No. 2, pp. 147–212 (2008).
[9] J. Shatah. Unstable ground state of nonlinear Klein-Gordon equations. Trans. Amer. Math. Soc. 290, No. 2, pp. 701–710 (1985).
[10] G. Talenti. Best constants in Sobolev inequality. Ann. Mat. Pura Appl. 110, pp. 353–372 (1976).
[11] Z. Wilstein. Global Well-Posedness for a Nonlinear Wave Equation with p-Laplacian Damping. Ph.D. thesis, University of Nebraska. http://digitalcommons.unl.edu/mathstudent/24
Cité par Sources :