Applications of Lie Group Analysis to Mathematical Modelling in Natural Sciences
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 52-65.

Voir la notice de l'article provenant de la source EDP Sciences

Today engineering and science researchers routinely confront problems in mathematical modeling involving solutions techniques for differential equations. Sometimes these solutions can be obtained analytically by numerous traditional ad hoc methods appropriate for integrating particular types of equations. More often, however, the solutions cannot be obtained by these methods, in spite of the fact that, e.g. over 400 types of integrable second-order ordinary differential equations were summarized in voluminous catalogues. On the other hand, many mathematical models formulated in terms of nonlinear differential equations can successfully be treated and solved by Lie group methods. Lie group analysis is especially valuable in investigating nonlinear differential equations, for its algorithms act here as reliably as for linear cases. The aim of this article is, from the one hand, to provide the wide audience of researchers with the comprehensive introduction to Lie’s group analysis and, from the other hand, is to illustrate the advantages of application of Lie group analysis to group theoretical modeling of internal gravity waves in stratified fluids.
DOI : 10.1051/mmnp/20127205

N. H. Ibragimov 1 ; R. N. Ibragimov 2

1 Department of Mathematics and ScienceBlekinge Institute of Technology, SE-371 79, Karlskrona, Sweden
2 Department of Mathematics, University of Texas at Brownsville, TX 78520, USA
@article{MMNP_2012_7_2_a4,
     author = {N. H. Ibragimov and R. N. Ibragimov},
     title = {Applications of {Lie} {Group} {Analysis} to {Mathematical} {Modelling} in {Natural} {Sciences}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {52--65},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2012},
     doi = {10.1051/mmnp/20127205},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127205/}
}
TY  - JOUR
AU  - N. H. Ibragimov
AU  - R. N. Ibragimov
TI  - Applications of Lie Group Analysis to Mathematical Modelling in Natural Sciences
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 52
EP  - 65
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127205/
DO  - 10.1051/mmnp/20127205
LA  - en
ID  - MMNP_2012_7_2_a4
ER  - 
%0 Journal Article
%A N. H. Ibragimov
%A R. N. Ibragimov
%T Applications of Lie Group Analysis to Mathematical Modelling in Natural Sciences
%J Mathematical modelling of natural phenomena
%D 2012
%P 52-65
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127205/
%R 10.1051/mmnp/20127205
%G en
%F MMNP_2012_7_2_a4
N. H. Ibragimov; R. N. Ibragimov. Applications of Lie Group Analysis to Mathematical Modelling in Natural Sciences. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 52-65. doi : 10.1051/mmnp/20127205. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127205/

[1] H. Cho, T. Shepherd, V. Vladimirov J. Atmosph. Sci. 1993 822 836

[2] W. Craig, P. Guyenne, H. Kalisch Comm. Pure Appl. Math. 2005 1587 1641

[3] E. Dewan, R. Picard, R. O’Neil, H. Gardiner, J. Gibson Geophys. Res. Lett. 1998 939 942

[4] S. Dalziel, G. Hughes, B. Sutherland Experiments in Fluids 2000 322 337

[5] T. Dauxois, W. Young J. Fluid Mech. 1999 271 295

[6] R. Fjortoft. R Geophys. Publ. 1950 1 52

[7] M. Flynn, K. Onu, B. Sutherland J. Fluid Mech. 2003 65 93

[8] C. Garrett. Internal tides and ocean mixing. Science, (2003), 301 (5641), 1858-1859, doi :10.1126/science.1090002.

[9] C. Garrett, W. Munk A progress report. J. Geophys. Res. 1975 291 297

[10] A. Gill. Atmosphere-Ocean Dynamics. New York, etc., Academic Press, (1983).

[11] J. Hadamard. Lectures on Cauchy’s problem in linear partial differential equations. Yale University Press, New Haven, (1983).

[12] J. Hadamard. The problem of diffusion of waves. Annals of Mathematics, Ser. 2 43 : 510-522, (1942).

[13] N. Ibragimov. Elementary Lie group analysis of ordinary differential equations. John Wiley Sons, Chichester, (1999).

[14] N. Ibragimov. Transformation Groups Applied to Mathematical Physics. Nauka, Moscow (1983), English. transl., Reidel, Dordrecht.

[15]

[16] N. Ibragimov J. Math. Anal. Appl. 2007 311 328

[17] N. Ibragimov Selected works (ALGA Publications, Karlskrona) 2006 225 243

[18] N. Ibragimov Soviet Mathematics Doklady 1970 1153 1157

[19] N. Ibragimov Archives of ALGA 2010 91 101

[20] N. Ibragimov Nonlinear Math. Phys. 2011 143 162

[21] N. Ibragimov, R. Ibragimov, V. Kovalev Archives of ALGA 2009 45 54

[22] N. Ibragimov, R. Ibragimov. Applications of Lie Group Analysis in Geophysical Fluid Dynamics. Series on Complexity, Nonlinearity and Chaos, (2011), Vol 2, World Scientific Publishers, ISBN : 978-981-4340-46-5.

[23] N. Ibragimov, R. Ibragimov Comm. Nonlinear Sci. Num. Simulat. 2010 1989 2002

[24] R. Ibragimov Eur. Phys. J. Appl. Phys. 2007 315 334

[25] R. Ibragimov Phys. Scr. 2008 065801

[26] R. Ibragimov, D. Pelinovsky J. Math. Fluid. Mech. 2009 60 90

[27] R. Ibragimov, N. Ibragimov Ocean Modelling 2010 80 87

[28] R. Ibragimov, M. Dameron Phys. Scr. 2011 015402

[29] A. Javam, J. Imberger, S. Armfield J. Fluid Mech. 2000 65 87

[30] H. Kalisch, N. Nguyen J. Phys. A 2010 495205

[31] H. Kalisch, J. Bona Disc. Cont. Dyn. Sys. 2000 1 19

[32] A. Kistovich, Y. Chashechkin Izv. Atmos. Ocean. Phys. 1991 946 951

[33] F. Lam, L. Mass, T. Gerkema Deep-See Res. 2004 10751096

[34] P. Lombard, J. Riley Dyn. Atmos. Oceans 1996 345 355

[35] H. Moffatt. High frequency excitation of liquid metal systems. Metallurgical Applications of Magnetohydrodynamics, (1984), (Metals Society, London) 180-189.

[36] P. Müller, G. Holloway, F. Henyey, N. Pomphrey Rev. Geophys. 1986 493 536

[37] J. Nash, E. Kunze, C. Lee, T. Sanford J. Phys. Oceanogr. 2006 1123 1135

[38] P. Olver. Applications of Lie groups to differential equations. Springer-Verlag, New York, 2nd ed. 1993.

[39] L. Ovsyannikov. Group Analysis of Differential Equations. Nauka, Moscow, (1978), English transl., ed. W.F. Ames, Academic Press, New York (1982).

[40] D. Ramsden, G. Holloway J. Geophys. Res. 1992 3659 3668

[41] J. Riley, R. Metcalfe, M. Weissman. Direct numerical simulations of homogeneous turbulence in density-stratified fluids. Nonlinear properties of internal waves, (1981), 76, edited by B.J. West, pp. 79-112, Americal Institute of Physics, New York.

[42] T. Shepherd Advances in Geophysics 1990 287 338

[43] C. Staquet, J. Sommeria Annu. Rev. Fluid Mech. 2002 559 593

[44] A. Tabaei, T. Akylas, K. Lamb J. Fluid Mech. 2005 217 243

[45] A. Tabaei, T. Akylas J. Fluid Mech. 2003 141 161

[46] S. Teoh, J. Imberger, G. Ivey J. Fluid Mech. 1997 91

[47] K. Winters, E. D’Asaro J. Phys. Oceanogr. 1997 235 243

[48] C. Wunsch, R. Ferrari Annu. Rev. Fluid Mech. 2004 281 314

[49] H. Zhang, B. King, H. Swinney Phys. Rev. Let. 2008 244504

Cité par Sources :