Baroclinic Kelvin Waves in a Rotating Circular Basin
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 38-51.

Voir la notice de l'article provenant de la source EDP Sciences

A linear, uniformly stratified ocean model is used to investigate propagation of baroclinic Kelvin waves in a cylindrical basin. It is found that smaller wave amplitudes are inherent to higher mode individual terms of the obtained solutions that are also evanescent away of a costal line toward the center of the circular basin. It is also shown that the individual terms if the obtained solutions can be visualized as spinning patterns in rotating stratified fluid confined in a circular basin. Moreover, the fluid patterns look rotating in an anticlockwise sense looking above the North Pole and that spinning is more intensive for smaller mode numbers. Finally, we observe the existence of the oceanic region where the pressure increases relatively rapidly with the depth.
DOI : 10.1051/mmnp/20127204

R. N. Ibragimov 1

1 Department of Mathematics, University of Texas at Brownsville, TX 78520, USA
@article{MMNP_2012_7_2_a3,
     author = {R. N. Ibragimov},
     title = {Baroclinic {Kelvin} {Waves} in a {Rotating} {Circular} {Basin}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {38--51},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2012},
     doi = {10.1051/mmnp/20127204},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127204/}
}
TY  - JOUR
AU  - R. N. Ibragimov
TI  - Baroclinic Kelvin Waves in a Rotating Circular Basin
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 38
EP  - 51
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127204/
DO  - 10.1051/mmnp/20127204
LA  - en
ID  - MMNP_2012_7_2_a3
ER  - 
%0 Journal Article
%A R. N. Ibragimov
%T Baroclinic Kelvin Waves in a Rotating Circular Basin
%J Mathematical modelling of natural phenomena
%D 2012
%P 38-51
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127204/
%R 10.1051/mmnp/20127204
%G en
%F MMNP_2012_7_2_a3
R. N. Ibragimov. Baroclinic Kelvin Waves in a Rotating Circular Basin. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 38-51. doi : 10.1051/mmnp/20127204. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127204/

[1] S. Balasuriya J. Math.Anal. Appl. 1997 128 150

[2] E. Dewan, R. Picard, R. O’Neil, H. Gardiner, J. Gibson Geophys. Res. Lett. 1998 939 942

[3] A. Gill. Atmosphere-Ocean Dynamics. New York, etc., Academic Press, 1983.

[4] G. Haltiner, R. Williams. Numerical prediction and dynamic meteorology, 1980.

[5] P. Hsieh Ground Water 2011 319 323

[6] J. Lions, R. Teman, S. Wang Nonlinearity 1992 1007 1053

[7] J. Lions, R. Teman, S. Wang Nonlinearity 1992 237 288

[8] J. Mccreary J. Phys, Oceanogr. 1976 632 645

[9] J. Mccreary Phil. Trans. Roy. Soc. London. 1981 385 413

[10] J. Mccreary J. Mar. Res. 1984 395 430

[11] P. Müller, G. Holloway, F. Henyey, N. Pomphrey Rev. Geophys. 1986 493 536

[12] D. Nethery, D. Shankar J. Earth. Syst. Sci. 2007 331 339

[13] R. Romea, J. Allen J. Phys. Oceanogr. 1983 254

[14] D. Shindell, G. Schmidt Res. Lett. 2004 L18209

[15] C. Staquet, J. Sommeria Annu. Rev. Fluid Mech. 2002 559 593

[16] C. Summerhayes, S. Thorpe. Oceanography, An Illustrative Guide, New York : John Willey Sons, (1996).

[17] R. Szoeke, R. Samelson J. Phys. Oceanogr. 2002 2194 2203

[18] A. Timmermann, M. Latif, A. Grotzner, R. Voss, R. Climate Dynamics. 1999 605 618

[19] G. Watson. A Treatise on the Theory of Bessel Functions, Second edition, Cambridge University Press, (1996)(ISBN-13 : 9780521483919 — ISBN-10 : 0521483913) .

Cité par Sources :