Adiabatic Evolution of Coupled Waves for a Schrödinger-Korteweg-de Vries System
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 1-12.

Voir la notice de l'article provenant de la source EDP Sciences

The effective dynamics of interacting waves for coupled Schrödinger-Korteweg-de Vries equations over a slowly varying random bottom is rigorously studied. One motivation for studying such a system is better understanding the unidirectional motion of interacting surface and internal waves for a fluid system that is formed of two immiscible layers. It was shown recently by Craig-Guyenne-Sulem [1] that in the regime where the internal wave has a large amplitude and a long wavelength, the dynamics of the surface of the fluid is described by the Schrödinger equation, while that of the internal wave is described by the Korteweg-de Vries equation. The purpose of this letter is to show that in the presence of a slowly varying random bottom, the coupled waves evolve adiabatically over a long time scale. The analysis covers the cases when the surface wave is a stable bound state or a long-lived metastable state.
DOI : 10.1051/mmnp/20127201

W. Abou Salem 1

1 Department of Mathematics and Statistics, University of Saskatchewan, SK, S7N 5E6, Canada
@article{MMNP_2012_7_2_a0,
     author = {W. Abou Salem},
     title = {Adiabatic {Evolution} of {Coupled} {Waves} for a {Schr\"odinger-Korteweg-de} {Vries} {System}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2012},
     doi = {10.1051/mmnp/20127201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127201/}
}
TY  - JOUR
AU  - W. Abou Salem
TI  - Adiabatic Evolution of Coupled Waves for a Schrödinger-Korteweg-de Vries System
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 1
EP  - 12
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127201/
DO  - 10.1051/mmnp/20127201
LA  - en
ID  - MMNP_2012_7_2_a0
ER  - 
%0 Journal Article
%A W. Abou Salem
%T Adiabatic Evolution of Coupled Waves for a Schrödinger-Korteweg-de Vries System
%J Mathematical modelling of natural phenomena
%D 2012
%P 1-12
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127201/
%R 10.1051/mmnp/20127201
%G en
%F MMNP_2012_7_2_a0
W. Abou Salem. Adiabatic Evolution of Coupled Waves for a Schrödinger-Korteweg-de Vries System. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 1-12. doi : 10.1051/mmnp/20127201. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127201/

[1] W. Craig, P. Guyenne, C. Sulem. Coupling between internal and surface waves, Natural Hazards, Special Issue on “Internal waves in the oceans and estuaries : modeling and observations”, (2010), doi :10.1007/s11069-010-9535-4, 26pp.

[2] W. Craig, P. Guyenne, C. Sulem Wave Motion 2010 552 563

[3] E. Van Groesen, S. R. Pudjaprasetya Wave Motion 1993 345 370

[4] S. B. Yoon, Philip L.-F. Liu Wave Motion 1994 359 370

[5] S.I Dejak, I.M. Segal Comm. Pure Appl. Math. 2006 869 905

[6] S.I. Dejak, B.L.G Jonsson. Long time dynamics of variable coefficient mKdV solitary waves. J. Math. Phys. 47 (2006), 072703, 16pp.

[7] J. Holmer. Dynamics of KdV solitons in the presence of a slowly varying potential. IMRN (2011), doi :10.1093/imrn/rnq284, 31pp.

[8] J. Holmer, G. Perelman, M. Zworski Commun. Math. Phys. 2011 363 425

[9] C. Munoz. On the soliton dynamics under a slowly varying medium for generalized KdV equations. arxiv.org arXiv :0912.4725 [math.AP] (2009). To appear in Analysis and PDE.

[10] W. Abou Salem, J. Fröhlich Commun. Math. Phys. 2007 651 675

[11] T. Kato Phys. Soc. Jap. 1958 435 439

[12] J.E. Avron, A. Elgart Commun. Math. Phys. 1999 445 463

[13] S. Teufel Lett. Math. Phys. 2002 261 266

[14] A. Joye Commun. Math. Phys. 2007 139 162

[15] V. S. Buslaev, C. Sulem Asymptotic Anal. 2008 17 45

[16] A. Elgart, G. A. Hagedorn Comm. Pure Appl. Math. 2011 1029 1058

[17] J.L. Bona, P.E. Souganidis, W.A. Strauss Proc. Roy. Soc. London Ser. A 1987 395 412

[18] L. Guillopé, M. Zworski J. Func. Anal. 1995 364 389

[19] T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag New York, 1991.

[20] W. Hunziker Commun. Math. Phys. 1990 177

[21] C.E. Kenig, G. Ponce, L. Vega Comm. Pure Appl. Math. 1993 527 620

[22] J. Holmer, M. Zworski. Soliton interaction with slowly varying potentials. IMRN (2008), doi : 10.1093/imrn/rnn026, 36 pp.

[23] Y. Martel, F. Merle Nonlinearity 2005 55 80

Cité par Sources :