Voir la notice de l'article provenant de la source EDP Sciences
@article{10_1051_mmnp_20127201,
author = {W. Abou Salem},
title = {Adiabatic {Evolution} of {Coupled} {Waves} for a {Schr\"odinger-Korteweg-de} {Vries} {System}},
journal = {Mathematical modelling of natural phenomena},
pages = {1--12},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2012},
doi = {10.1051/mmnp/20127201},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127201/}
}
TY - JOUR AU - W. Abou Salem TI - Adiabatic Evolution of Coupled Waves for a Schrödinger-Korteweg-de Vries System JO - Mathematical modelling of natural phenomena PY - 2012 SP - 1 EP - 12 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127201/ DO - 10.1051/mmnp/20127201 LA - en ID - 10_1051_mmnp_20127201 ER -
%0 Journal Article %A W. Abou Salem %T Adiabatic Evolution of Coupled Waves for a Schrödinger-Korteweg-de Vries System %J Mathematical modelling of natural phenomena %D 2012 %P 1-12 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127201/ %R 10.1051/mmnp/20127201 %G en %F 10_1051_mmnp_20127201
W. Abou Salem. Adiabatic Evolution of Coupled Waves for a Schrödinger-Korteweg-de Vries System. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 1-12. doi: 10.1051/mmnp/20127201
[1] W. Craig, P. Guyenne, C. Sulem. Coupling between internal and surface waves, Natural Hazards, Special Issue on “Internal waves in the oceans and estuaries : modeling and observations”, (2010), doi :10.1007/s11069-010-9535-4, 26pp.
[2] , , Wave Motion 2010 552 563
[3] , Wave Motion 1993 345 370
[4] , Wave Motion 1994 359 370
[5] , Comm. Pure Appl. Math. 2006 869 905
[6] S.I. Dejak, B.L.G Jonsson. Long time dynamics of variable coefficient mKdV solitary waves. J. Math. Phys. 47 (2006), 072703, 16pp.
[7] J. Holmer. Dynamics of KdV solitons in the presence of a slowly varying potential. IMRN (2011), doi :10.1093/imrn/rnq284, 31pp.
[8] , , Commun. Math. Phys. 2011 363 425
[9] C. Munoz. On the soliton dynamics under a slowly varying medium for generalized KdV equations. arxiv.org arXiv :0912.4725 [math.AP] (2009). To appear in Analysis and PDE.
[10] , Commun. Math. Phys. 2007 651 675
[11] Phys. Soc. Jap. 1958 435 439
[12] , Commun. Math. Phys. 1999 445 463
[13] Lett. Math. Phys. 2002 261 266
[14] Commun. Math. Phys. 2007 139 162
[15] , Asymptotic Anal. 2008 17 45
[16] , Comm. Pure Appl. Math. 2011 1029 1058
[17] , , Proc. Roy. Soc. London Ser. A 1987 395 412
[18] , J. Func. Anal. 1995 364 389
[19] T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag New York, 1991.
[20] Commun. Math. Phys. 1990 177
[21] , , Comm. Pure Appl. Math. 1993 527 620
[22] J. Holmer, M. Zworski. Soliton interaction with slowly varying potentials. IMRN (2008), doi : 10.1093/imrn/rnn026, 36 pp.
[23] , Nonlinearity 2005 55 80
Cité par Sources :