Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2012_7_2_a0, author = {W. Abou Salem}, title = {Adiabatic {Evolution} of {Coupled} {Waves} for a {Schr\"odinger-Korteweg-de} {Vries} {System}}, journal = {Mathematical modelling of natural phenomena}, pages = {1--12}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2012}, doi = {10.1051/mmnp/20127201}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127201/} }
TY - JOUR AU - W. Abou Salem TI - Adiabatic Evolution of Coupled Waves for a Schrödinger-Korteweg-de Vries System JO - Mathematical modelling of natural phenomena PY - 2012 SP - 1 EP - 12 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127201/ DO - 10.1051/mmnp/20127201 LA - en ID - MMNP_2012_7_2_a0 ER -
%0 Journal Article %A W. Abou Salem %T Adiabatic Evolution of Coupled Waves for a Schrödinger-Korteweg-de Vries System %J Mathematical modelling of natural phenomena %D 2012 %P 1-12 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127201/ %R 10.1051/mmnp/20127201 %G en %F MMNP_2012_7_2_a0
W. Abou Salem. Adiabatic Evolution of Coupled Waves for a Schrödinger-Korteweg-de Vries System. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 2, pp. 1-12. doi : 10.1051/mmnp/20127201. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127201/
[1] W. Craig, P. Guyenne, C. Sulem. Coupling between internal and surface waves, Natural Hazards, Special Issue on “Internal waves in the oceans and estuaries : modeling and observations”, (2010), doi :10.1007/s11069-010-9535-4, 26pp.
[2] Wave Motion 2010 552 563
, ,[3] Wave Motion 1993 345 370
,[4] Wave Motion 1994 359 370
,[5] Comm. Pure Appl. Math. 2006 869 905
,[6] S.I. Dejak, B.L.G Jonsson. Long time dynamics of variable coefficient mKdV solitary waves. J. Math. Phys. 47 (2006), 072703, 16pp.
[7] J. Holmer. Dynamics of KdV solitons in the presence of a slowly varying potential. IMRN (2011), doi :10.1093/imrn/rnq284, 31pp.
[8] Commun. Math. Phys. 2011 363 425
, ,[9] C. Munoz. On the soliton dynamics under a slowly varying medium for generalized KdV equations. arxiv.org arXiv :0912.4725 [math.AP] (2009). To appear in Analysis and PDE.
[10] Commun. Math. Phys. 2007 651 675
,[11] Phys. Soc. Jap. 1958 435 439
[12] Commun. Math. Phys. 1999 445 463
,[13] Lett. Math. Phys. 2002 261 266
[14] Commun. Math. Phys. 2007 139 162
[15] Asymptotic Anal. 2008 17 45
,[16] Comm. Pure Appl. Math. 2011 1029 1058
,[17] Proc. Roy. Soc. London Ser. A 1987 395 412
, ,[18] J. Func. Anal. 1995 364 389
,[19] T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag New York, 1991.
[20] Commun. Math. Phys. 1990 177
[21] Comm. Pure Appl. Math. 1993 527 620
, ,[22] J. Holmer, M. Zworski. Soliton interaction with slowly varying potentials. IMRN (2008), doi : 10.1093/imrn/rnn026, 36 pp.
[23] Nonlinearity 2005 55 80
,Cité par Sources :