Periodic Solutions in a Mathematical Model for the Treatment of Chronic Myelogenous Leukemia
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 1, pp. 235-244.

Voir la notice de l'article provenant de la source EDP Sciences

Existence and stability of periodic solutions are studied for a system of delay differential equations with two delays, with periodic coefficients. It models the evolution of hematopoietic stem cells and mature neutrophil cells in chronic myelogenous leukemia under a periodic treatment that acts only on mature cells. Existence of a guiding function leads to the proof of the existence of a strictly positive periodic solution by a theorem of Krasnoselskii. The stability of this solution is analysed.
DOI : 10.1051/mmnp/20127110

A. Halanay 1

1 Department of Mathematics I, Politehnica University of Bucharest, 060042 Bucharest, Romania
@article{MMNP_2012_7_1_a9,
     author = {A. Halanay},
     title = {Periodic {Solutions} in a {Mathematical} {Model} for the {Treatment} of {Chronic} {Myelogenous} {Leukemia}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {235--244},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2012},
     doi = {10.1051/mmnp/20127110},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127110/}
}
TY  - JOUR
AU  - A. Halanay
TI  - Periodic Solutions in a Mathematical Model for the Treatment of Chronic Myelogenous Leukemia
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 235
EP  - 244
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127110/
DO  - 10.1051/mmnp/20127110
LA  - en
ID  - MMNP_2012_7_1_a9
ER  - 
%0 Journal Article
%A A. Halanay
%T Periodic Solutions in a Mathematical Model for the Treatment of Chronic Myelogenous Leukemia
%J Mathematical modelling of natural phenomena
%D 2012
%P 235-244
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127110/
%R 10.1051/mmnp/20127110
%G en
%F MMNP_2012_7_1_a9
A. Halanay. Periodic Solutions in a Mathematical Model for the Treatment of Chronic Myelogenous Leukemia. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 1, pp. 235-244. doi : 10.1051/mmnp/20127110. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127110/

[1] L.H. Abbott, F. Michor British Journal of Cancer 2006 1136 1141

[2] M. Adimy, F. Crauste, A. Halanay, M. Neamţu, D. Opriş Chaos, Solitons&Fractals 2006 1091 1107

[3] M. Adimy, F. Crauste, S. Ruan SIAM J. Appl. Math. 2005 1328 1352

[4] M. Adimy, F. Crauste, S. Ruan Journal of Theoretical Biology 2006 288 299

[5] S. Bernard, J. Belair, M.C. Mackey J. Theor. Biology 2003 283 298

[6] B. Clarkson, A. Strife, D. Wisniewski, U. Lambek, C. Liu Leukemia 2003 1211 1262

[7] C. Colijn, M.C. Mackey J. Theor. Biology 2005 117 132

[8] Aristide Halanay, Differential Equations : stability, oscilations, time lags. Academic Press, 1966.

[9] A. Halanay. Periodic Solutions in Mathematical Models for Hematological Diseases under Treatment. IEEE Proceedings of the 8-th IFAC Workshop on Time-Delay Systems, Sept. 1-3, Sinaia, Romania, 2009.

[10] A. Halanay Bull. Sci. Soc. Roumaine Sci. Math. 2010 3 10

[11] A. Halanay. Treatment induced periodic solutions in some mathematical models of tumoral cell dynamics. Mathematical Reports !2(62) (2010), no. 4, in press.

[12] J. Hale. Theory of Functional Differential Equations. Springer, New York, 1977.

[13] V. Kolmanovskii, A. Myshkis. Applied Theory of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht, 1992.

[14] M.A. Krasnoselskii. Shift operator on orbits of differential equations. Nauka, Moskow, 1966 (in Russian).

[15] M.C. Mackey Blood 1978 941 956

[16] M.C. Mackey, C. Ou, L. Pujo-Menjouet, J. Wu SIAM J. Math. Anal. 2006 166 187

[17] F. Michor, T. Hughes, Y. Iwasa, S. Branford, N.P. Shah, C. Sawyers, M. Novak Nature 2005 1267 1270

[18] H. Moore, N.K. Li J. Theor. Biol. 2004 513 523

[19] L. Pujo-Menjouet, C. Mackey Comptes Rendus Biol 2004 235 244

[20] C. Sawyers N. Engl. J. Med. 2000 1330 1340

Cité par Sources :