A Hybrid Model Describing Different Morphologies of Tumor Invasion Fronts
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 1, pp. 78-104.

Voir la notice de l'article provenant de la source EDP Sciences

The invasive capability is fundamental in determining the malignancy of a solid tumor. Revealing biomedical strategies that are able to partially decrease cancer invasiveness is therefore an important approach in the treatment of the disease and has given rise to multiple in vitro and in silico models. We here develop a hybrid computational framework, whose aim is to characterize the effects of the different cellular and subcellular mechanisms involved in the invasion of a malignant mass. In particular, a discrete Cellular Potts Model is used to represent the population of cancer cells at the mesoscopic scale, while a continuous approach of reaction-diffusion equations is employed to describe the evolution of microscopic variables, as the nutrients and the proteins present in the microenvironment and the matrix degrading enzymes secreted by the tumor. The behavior of each cell is then determined by a balance of forces, such as homotypic (cell-cell) and heterotypic (cell-matrix) adhesions and haptotaxis, and is mediated by the internal state of the individual, i.e. its motility. The resulting composite model quantifies the influence of changes in the mechanisms involved in tumor invasion and, more interestingly, puts in evidence possible therapeutic approaches, that are potentially effective in decreasing the malignancy of the disease, such as the alteration in the adhesive properties of the cells, the inhibition in their ability to remodel and the disruption of the haptotactic movement. We also extend the simulation framework by including cell proliferation which, following experimental evidence, is regulated by the intracellular level of growth factors. Interestingly, in spite of the increment in cellular density, the depth of invasion is not significantly increased, as one could have expected.
DOI : 10.1051/mmnp/20127105

M. Scianna 1, 2 ; L. Preziosi 1

1 Department of Mathematics, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
2 Institute for Cancer Research and Treatment Strada Provinciale 142, 10060 Candiolo, Italy
@article{MMNP_2012_7_1_a4,
     author = {M. Scianna and L. Preziosi},
     title = {A {Hybrid} {Model} {Describing} {Different} {Morphologies} of {Tumor} {Invasion} {Fronts}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {78--104},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2012},
     doi = {10.1051/mmnp/20127105},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127105/}
}
TY  - JOUR
AU  - M. Scianna
AU  - L. Preziosi
TI  - A Hybrid Model Describing Different Morphologies of Tumor Invasion Fronts
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 78
EP  - 104
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127105/
DO  - 10.1051/mmnp/20127105
LA  - en
ID  - MMNP_2012_7_1_a4
ER  - 
%0 Journal Article
%A M. Scianna
%A L. Preziosi
%T A Hybrid Model Describing Different Morphologies of Tumor Invasion Fronts
%J Mathematical modelling of natural phenomena
%D 2012
%P 78-104
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127105/
%R 10.1051/mmnp/20127105
%G en
%F MMNP_2012_7_1_a4
M. Scianna; L. Preziosi. A Hybrid Model Describing Different Morphologies of Tumor Invasion Fronts. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 1, pp. 78-104. doi : 10.1051/mmnp/20127105. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127105/

[1] M. Abercrombie Proc. R. Soc. London B. 1980 129 147

[2] T. Alarcon, H. Byrne, P. Maini J. Theor. Biol. 2003 257 274

[3] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell, 4th ed. Garland Science, New York, 2002.

[4] A. Anderson, A. Weaver, P. Commmings, V. Quaranta Cell 2006 905 915

[5] A. Anderson Math. Med. Biol. 2005 163 186

[6] R. Araujo, D. Mcelwain Bull. Math. Biol. 2004 1039 1091

[7] A. Balter, R. M. H. Merks, N. J. Poplawski, M. Swat, J. A. Glazier. The Glazier-Graner-Hogeweg model : extensions, future directions, and opportunities for further study. In A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions, Birkaüser, 151–167, 2007.

[8] N. Bellomo, N. K. Li, P. K. Maini Math. Models Methods Appl. Sci. 2008 593 646

[9] J. M. Bock, L. L. Sinclair, N. S. Bedford, R. E. Jackson, J. H. Lee, D. K. Trask Arch. Otolaryngol. Head. Neck. Surg. 2008 355 362

[10] J. M. Brown Cancer Biol. Ther. 2002 453 458

[11] A. Bru, S. Albertos, J. L. Subiza, J. L. García-Asenjo, I. Bru Bioph. J. 2003 2948 2961

[12] Cancer modeling and simulation, L. Preziosi editor, Mathematical Biology and Medicine Sciences, Chapman and Hall/CRC, 2003.

[13] H. Byrne, T. Alarcon, M. Owen, S. Webb, P. Maini Philos. Trans. R. Soc. A. 2006 1563 1578

[14] M. A. J. Chaplain, A. R. A. Anderson. Mathematical modelling of tissue invasion. In L. Preziosi editor, Cancer Modelling and Simulation, Chapman Hall/CRC, 269–297, 2003.

[15] V. Cristini, H. Frieboes, R. Gatenby, S. Caserta, M. Ferrari, J. Sinek Clin. Cancer Res. 2005 6772 6779

[16] V. Cristini, J. Lowengrub, Q. Nie J. Math. Biol. 2003 191 224

[17] S. S. Cross J. Pathol. 1997 1 8

[18] A. De Luca, N. Arena, L. M. Sena, E. Medico J. Cell Physiol. 1999 365

[19] M. F. Di Renzo, M. Oliviero, R. P. Narsimhan, S. Bretti, S. Giordano, E. Medico, P. Gaglia, P. Zara, P. M. Comoglio Oncogene 1991 1997 2003

[20] A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin, D. Discher Biophys. J. 2004 617 628

[21] R. Gatenby, K. Smallbone, P. Maini, F. Rose, J. Averill, R. Nagle, L. Worrall, R. Gillies Br. J. Cancer 2007 646 653

[22] C. Gaudet, W. Marganski, S. Kim, C. T. Brown, V. Gunderia, M. Dembo, J. Wong Biophys. J. 2003 3329 3335

[23] P. Gerlee, A. Anderson J. Theor. Biol. 2007 583 603

[24] P. Gerlee, A. Anderson Phys. Rev. E 2007 051911

[25] C. Giverso, M. Scianna, L. Preziosi, N. Lo Buono, A. Funaro Math. Model. Nat. Phenom. 2010 203 223

[26] J. A. Glazier, A. Balter, N. J. Poplawski. Magnetization to morphogenesis : A brief history of the Glazier-Graner-Hogeweg model. In A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions, Birkaüser, 79–106, 2007.

[27] J. A. Glazier, F. Graner Physical. Rev. E 1993 2128 2154

[28] F. Graner, J. A. Glazier Phys. Rev. Lett. 1992 2013 2017

[29] H. Hatzikirou, A. Deutsch, C. Schaller, M. Simon, K. Swanson Math. Models Methods Appl. Sci. 2005 1779 1794

[30] B. Hegedus, F. Marga, K. Jakab, K. L. Sharpe-Timms, G. Forgacs Biophys. J. 2006 2708 2716

[31] C. Hogea, B. Murray, J. Sethian J. Math. Biol. 2006 86 134

[32] S. Huang, D. E. Ingber Nat. Cell Biol. 1999 131 138

[33] E. Ising Z. Physik. 1925 253

[34] Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell, J. Freyer Biophys. J. 2005 3884 3894

[35] H. A. Kenny, S. Kaur, L. M. Coussens, E. Lengyel J. Clin. Invest. 2008 1367 1379

[36] G. Landini, Y. Hirayama, T. J. Li, M. Kitano Pathol. Res. Pract. 2000 251 258

[37] X. Li, V. Cristini, Q. Nie, J. Lowengrub Discrete Dyn. Continuous Dyn. Syst. B 2007 581 604

[38] J. Lowengrub, V. Cristini, H. B. Frieboes, X. Li, P. Macklin, S.Sanga, S. M. Wise, X. Zheng. Nonlinear modeling and simulation of tumor growth, In N. Bellomo, M. Chaplain and E. DeAngelis Modeling and Simulation in Science, Birkaüser, in press, 2011.

[39] J. Lowengrub, V. Cristini. Multiscale modeling of cancer : an integrated experimental and mathematical modeling approach. Cambridge University Press, 2010.

[40] J. Lowengrub, H. B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S. M. Wise, V. Cristini Nonlinearity 2010 R1 R91

[41] P. Macklin, J. Lowengrub J. Comput. Phys. 2006 392 401

[42] P. Macklin, J. Lowengrub J. Theor. Biol. 2007 677 704

[43] A. F. M. Marée, V. A. Grieneisen, P. Hogeweg, P. The Cellular Potts Model and biophysical properties of cells, tissues and morphogenesis. In A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions, Birkaüser, 107–136, 2007.

[44] R. M. H. Merks, P. Koolwijk Math. Model. Nat. Phenom. 2009 149 171

[45] N. Metropolis, A. E. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller J. Chem. Phys. 1953 1087 1092

[46] E. Montero, C. Abreu, P. Tonino Journal of Cancer Research and Clinical Oncology 2007 193 201

[47] W. Mueller-Klieser Crit. Rev. Oncol. Hematol. 2002 123 139

[48] G. Murphy, J. Gavrilovic Curr. Opin. Cell Biol. 1999 614 621

[49] H. Osada, T. Takahashi Oncogene 2002 7421 7434

[50] N. B. Ouchi, J. A. Glazier, J. P. Rieu, A. Upadhyaya, J. Sawada Physica A 2003 451 458

[51] R. B. Potts Proc. Camb. Phil. Soc. 1952 106 109

[52] L. Preziosi, A. Tosin J. Math. Biol. 2007 625 656

[53] L. Preziosi, A. Tosin Math. Model. Nat. Phenom. 2009 1 11

[54] V. Quaranta, A. Weaver, P. Cummings, A. Anderson Clin. Chim. Acta 2005 173 179

[55] I. Ramis-Conde, D. Drasdo, A. R. A. Anderson, M. A. J. Chaplain Biophys. J. 2008 155 165

[56] K. A. Rejniak, R. H. Dillon Comp. Math. Meth. Med. 2007 51 69

[57] B. Ribba, O. Sautb, T. Colinb, D. Breschc, E. Grenierd, J. P. Boissel J. Theor. Biol. 2006 532 541

[58] C. G. Rolli, T. Seufferlein, R. Kemkemer, J. P. Spatz PLoS ONE 2010 e8726

[59] S. Sanga, J. Sinek, H. Frieboes, M. Ferrari, J. Fruehauf, V. Cristini Expert. Rev. Anticancer Ther. 2006 1361 1376

[60] N. J. Savill, P. Hogeweg J. Theor. Biol. 1997 118 124

[61] M. Scianna. A multiscale hybrid model for pro-angiogenic calcium signals in a vascular endothelial cell. Bull. Math. Biol., doi : 10.1007/s11538-011-9695-8 (2011), in press.

[62] M. Scianna, L. Preziosi. Multiscale Developments of the Cellular Potts Model. (2010). In revision.

[63] J. A. Smith, L. Martin Proc. Natl. Acad. Sci. U.S.A. 1973 1263 1267

[64] J. Smolle Anal. Quant. Cytol. Histol. 1998 7 13

[65] I. A. Steele, R. J. Edmondson, H. Y. Leung, B. R. Davies Growth Factors 2006 45 53

[66] M. S. Steinberg Science 1963 401 408

[67] M. S. Steinberg J. Exp. Zool. 1970 395 433

[68] W. G. Stetler-Stevenson, S. Aznavoorian, L. A. Liotta Ann. Rev. Cell Biol. 1993 541 573

[69] J. L. Su, P. C. Yang, J. Y. Shih, C. Y. Yang, L. H. Wei, M. L. Kuo Cancer Cell 2006 209 223

[70] P. Tracqui Rep. Prog. Phys. 2009 056701

[71] S. Turner, J. A. Sherratt J. Theor. Biol. 2002 85 100

[72] P. Vaupel, M. Hockel Int. J. Oncol. 2000 869 879

[73] Y. W. Zhang, G. F. Vande Woude J. Cell Biochem. 2003 408 417

Cité par Sources :