Intracellular Modelling of Cell-Matrix Adhesion during Cancer Cell Invasion
Mathematical modelling of natural phenomena, Tome 7 (2012) no. 1, pp. 29-48.

Voir la notice de l'article provenant de la source EDP Sciences

When invading the tissue, malignant tumour cells (i.e. cancer cells) need to detach from neighbouring cells, degrade the basement membrane, and migrate through the extracellular matrix. These processes require loss of cell-cell adhesion and enhancement of cell-matrix adhesion. In this paper we present a mathematical model of an intracellular pathway for the interactions between a cancer cell and the extracellular matrix. Cancer cells use similar mechanisms as with normal cells for their interactions with the extracellular matrix. We develop a model of cell-matrix adhesion that accounts for reactions between the cell surface receptor integrins, the matrix glycoprotein fibronectin, and the actin filaments in the cytoskeleton. Each represents components for an intermediate compartment, the extracellular compartment, and the intracellular compartment, respectively. Binding of fibronectin with integrins triggers a clustering of protein complexes, which then activates and phosphorylates regulatory proteins that are involved in actin reorganisation causing actin polymerization and stress fibre assembly. Rearrangement of actin filaments with integrin/fibronectin complexes near adhesion sites and interaction with fibrillar fibronectin produces the force necessary for cell migration, accounting for cell-matrix adhesion.
DOI : 10.1051/mmnp/20127103

V. Andasari 1 ; M.A.J. Chaplain 1

1 Division of Mathematics, University of Dundee, DD1 4HN Dundee, Scotland UK
@article{MMNP_2012_7_1_a2,
     author = {V. Andasari and M.A.J. Chaplain},
     title = {Intracellular {Modelling} of {Cell-Matrix} {Adhesion} during {Cancer} {Cell} {Invasion}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {29--48},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2012},
     doi = {10.1051/mmnp/20127103},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127103/}
}
TY  - JOUR
AU  - V. Andasari
AU  - M.A.J. Chaplain
TI  - Intracellular Modelling of Cell-Matrix Adhesion during Cancer Cell Invasion
JO  - Mathematical modelling of natural phenomena
PY  - 2012
SP  - 29
EP  - 48
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127103/
DO  - 10.1051/mmnp/20127103
LA  - en
ID  - MMNP_2012_7_1_a2
ER  - 
%0 Journal Article
%A V. Andasari
%A M.A.J. Chaplain
%T Intracellular Modelling of Cell-Matrix Adhesion during Cancer Cell Invasion
%J Mathematical modelling of natural phenomena
%D 2012
%P 29-48
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127103/
%R 10.1051/mmnp/20127103
%G en
%F MMNP_2012_7_1_a2
V. Andasari; M.A.J. Chaplain. Intracellular Modelling of Cell-Matrix Adhesion during Cancer Cell Invasion. Mathematical modelling of natural phenomena, Tome 7 (2012) no. 1, pp. 29-48. doi : 10.1051/mmnp/20127103. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20127103/

[1] V.C. Abraham, V. Krishnamurthi, D.L. Taylor, F. Lanni Biophys. J. 1999 1721 1732

[2] O. Ali, H. Guillou, O. Destaing, C. Albiges-Rizo, M.R. Block, B. Fourcade Biophys. J. 2011 2595 2604

[3] M. Amano, K. Chihara, K. Kimura, Y. Fukata, N. Nakamura, Y. Matsuura, K. Kaibuchi Science 1997 1308 1311

[4] R. Ananthakrishnan, A. Ehrlicher Int. J. Biol. Sci. 2007 303 317

[5] A.L. Berrier, K.M. Yamada J. Cell. Physiol. 2007 565 573

[6] B. Butler, C. Gao, A.T. Mersich, S.D. Blystone Curr. Biol. 2006 242 251

[7] L.L. Chen, A. Whitty, R.R. Lobb, S.P. Adams, R.B. Pepinsky J. Biol. Chem. 1999 13167 13175

[8] D. Choquet, D.P. Felsenfeld, M.P. Sheetz Cell 1997 39 48

[9] C. Cluzel, F. Saltel, J. Lussi, F. Paulhe, B.A. Imhof, B. Wehrle-Haller J. Cell. Biol. 2005 383 392

[10] B. Cseh, S. Fernandez-Sauze, D. Grall, S. Schaub, E. Doma, E. Van Obberghen-Schilling J. Cell Sci. 2010 3989 3999

[11] P.A. Dimilla, K. Barbee, D.A. Lauffenburger Biophys. J. 1991 15 37

[12] G.J. Doherty, M.K. Ahlund, M.T. Howes, B. Moren, R.G. Parton, H.T. Mcmahon, R. Lundmark Mol. Biol. Cell 2011 4380 4389

[13] P. Friedl, K. Wolf Nat. Rev. Cancer 2003 362 374

[14] M. Fussenegger, J.E. Bailey, J. Varner Nat. Biotechnol. 2000 768 774

[15] N.D. Gallant, K.E. Michael, A.J. García Mol. Biol. Cell 2005 4329 4340

[16] A.J. García, D. Boettiger Biomaterials 1999 2427 2433

[17] A.J. García, F. Huber, D. Boettiger J. Biol. Chem. 1998 10988 10993

[18] F.G. Giancotti, E. Ruoslahti Science 1999 1028 1032

[19] M.Z. Gilcrease, X. Zhou, K. Welch Cancer Res. 2004 7395

[20] W.H. Guo, Y.L. Wang Mol. Biol. Cell 2007 4519 4527

[21] D.A. Hammer, D.A. Lauffenburger Biophys. J. 1987 475 487

[22] R.O. Hynes Cell 2002 673 687

[23] K. Kawakami, H. Tatsumi, M. Sokabe J. Cell Sci. 2001 3125 3135

[24] P. Koistinen, J. Heino. Integrins in cancer cell invasion. Cell invasion. Landes Bioscience, 2002.

[25] Z.H. Li, M. Kreiner, C.F. Van Der Walle, H.J. Mardon Biochem. Biophys. Res. Comm. 2011 777 782

[26] L.M. Machesky, A. Hall J. Cell. Biol. 1997 913 926

[27] A. Mallavarapu, T. Mitchison J. Cell. Biol. 1999 1097 1106

[28] M. Martini, A. Gnann, D. Scheiki, B. Holzmann, K.P. Janssen Int. J. Biochem. Cell. Biol. 2011 1630 1640

[29] E. Monaghan, V. Gueorguiev, C. Wilkins-Port J. Biol. Chem. 2004 1400 1407

[30] F.A. Moretti, A.K. Chauhan, A. Iaconcig, F. Porro, F.E. Baralle, A.F. Muro J. Biol. Chem. 2007 28057 28062

[31] S. Niland, J.A. Eble. Integrin-mediated cell-matrix interaction in physiological and pathological blood vessel formation. J. Oncol., (2012), Epub 2011 Sep 18, 125278.

[32] T. Nishizaka, Q. Shi, M.P. Sheetz PNAS 2000 692 697

[33] M. Ojaniemi, K. Vuori J. Biol. Chem. 1997 25993 25998

[34] T. Osada, Y.H. Gu, M. Kanazawa, Y. Tsubota, B.T. Hawkins, M. Spatz, R. Milner, G.J. Del Zoppo J. Cereb. Blood Flow Metab. 2011 1972 1985

[35] S.P. Palecek, A.F. Horwitz, D.A. Lauffenburger Ann. Biomed. Eng. 1999 219 235

[36] S.P. Palecek, A. Huttenlocher, A.F. Horwitz, D.A. Lauffenburger J. Cell Sci. 1998 929 940

[37] S.P. Palecek, J.C. Loftus, M.H. Ginsberg, D.A. Lauffenburger, A.F. Horwitz Nature 1997 537 540

[38] R. Pankov, K.M. Yamada J. Cell Sci. 2002 3861 3863

[39] M.J. Paszek, D. Boettiger, V.M. Weaver, D.A. Hammer PLoS Comput. Biol. 2009 e1000604

[40] T.D. Pollard, M.S. Mooseker J. Cell Biol. 1981 654 659

[41] C.M. Regen, A.F. Horwitz J. Cell Biol. 1992 1347 1359

[42] S. Roy, L. Bingle, J.F. Marshall, R. Bass, V. Ellis, P.M. Speight, S.A. Whawell J. Oral Pathol. 2011 755 761

[43] H. Schmidt, M. Jirstrand Bioinformatics 2006 514 515

[44] J.L. Sechler, Y. Takada, J.E. Schwarzbauer J. Cell Biol. 1996 573 583

[45] D.S. Spassov, C.H. Wong, N. Sergina, D. Ahuja, M. Fried, D. Sheppard, M.M. Moasser Mol. Cell. Biol. 2011 766 782

[46] Y. Takada, X. Ye, S. Simon Genome Biol. 2007 215

[47] J.W. Tamkun, R.O. Hynes J. Biol. Chem. 1983 4641 4647

[48] M. Waldeck-Weiermair, C. Zoratti, K. Osibow, N. Balenga, E. Goessnitzer, M. Waldhoer, R. Malli, W.F. Graier J. Cell Sci. 2008 1704 1717

[49] D.J. Webb, J.T. Parsons, A.R. Horwitz Nat. Cell Biol. 2002 E97 E100

[50] B. Wehrle-Haller. Analysis of integrin dynamics by fluorescence recovery after photobleaching. Adhesion Protein Protocols. Springer, 2007.

[51] B. Wehrle-Haller, B.A. Imhof Int. J. Biochem. Cell Biol. 2003 39 50

[52] E.S. Welf, B.A. Ogunnaike, U.P. Naik IET Sys. Biol. 2009 307 316

[53] I. Wierzbicka-Patynowski, J. Schwarzbauer J. Cell Sci. 2003 3269 3276

[54] P.W. Wiseman, C.M. Brown, D.J. Webb, B. Hebert, N.L. Johnson, J.A. Squier, M.H. Ellisman, A.F. Horwitz J. Cell Sci. 2004 5521 5534

[55] T. Yu, X. Wu, K.B. Gupta, D.F. Kucik Am. J. Physiol. Cell Physiol. 2010 C399 C410

[56] F. Zhang, J.E. Michaelson, S. Moshiach, N. Sachs, W. Zhao, Y. Sun, A. Sonnenberg, J.M. Lahti, H. Huang, X.A. Zhang Blood 2011 4274 4284

Cité par Sources :