Mathematical Model of Fibrin Polymerization
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 7 Supplement, pp. 55-69.

Voir la notice de l'article provenant de la source EDP Sciences

Blood clotting system (BCS) modelling is an important issue with a plenty of applications in medicine and biophysics. The BCS main function is to form a localized clot at the site of injury preventing blood loss. Mutual influence of fibrin clot consisting mainly of fibrin polymer gel and blood flow is an important factor for BCS to function properly. The process of fibrin polymer mesh formation has not adequately been described by current mathematical models. That is why it is not possible to define the borders of growing clot and model its interaction with a blood flow. This paper main goal is to propose physically well-founded mathematical model of fibrin polymerization and gelation. The proposed model defines the total length of fibrin polymer fibers in the unit volume, determines a position of the border between gel and liquid and allows to evaluate the permeability of growing gel. Without significant structural changes the proposed model could be modified to include the blood shear rate influence on the fibrin polymerization and gelation.
DOI : 10.1051/mmnp/20116705

A.I. Lobanov 1 ; A.V. Nikolaev 2 ; T.K. Starozhilova 1

1 Chair of Applied Mathematics, Moscow Institute of Physics and Technology, Moscow, Russia
2 Goldansky Department, Institute of Chemical Physics RAS, Moscow, Russia
@article{MMNP_2011_6_7_Supplement_a5,
     author = {A.I. Lobanov and A.V. Nikolaev and T.K. Starozhilova},
     title = {Mathematical {Model} of {Fibrin} {Polymerization}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {55--69},
     publisher = {mathdoc},
     volume = {6},
     number = {7 Supplement},
     year = {2011},
     doi = {10.1051/mmnp/20116705},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116705/}
}
TY  - JOUR
AU  - A.I. Lobanov
AU  - A.V. Nikolaev
AU  - T.K. Starozhilova
TI  - Mathematical Model of Fibrin Polymerization
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 55
EP  - 69
VL  - 6
IS  - 7 Supplement
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116705/
DO  - 10.1051/mmnp/20116705
LA  - en
ID  - MMNP_2011_6_7_Supplement_a5
ER  - 
%0 Journal Article
%A A.I. Lobanov
%A A.V. Nikolaev
%A T.K. Starozhilova
%T Mathematical Model of Fibrin Polymerization
%J Mathematical modelling of natural phenomena
%D 2011
%P 55-69
%V 6
%N 7 Supplement
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116705/
%R 10.1051/mmnp/20116705
%G en
%F MMNP_2011_6_7_Supplement_a5
A.I. Lobanov; A.V. Nikolaev; T.K. Starozhilova. Mathematical Model of Fibrin Polymerization. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 7 Supplement, pp. 55-69. doi : 10.1051/mmnp/20116705. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116705/

[1] World health report 2004 statistical annex [Electronic resource]: Annex Table 2: Deaths by cause, sex and mortality stratum in regions, estimates for 2002. World Health Organization. http://www.who.int/whr/2004/annex/en/index.html.

[2] Anand M., Rajagopal K., Rajagopal K.R. J. Theor. Med. 2003 183 218

[3] Ataullakhanov F.I., Guriia G.T., Safroshkina A.Iu. Biofizika 1994 97 104

[4] Ataullakhanov F.I., Zarnitsina V.I. Int. J. Bifurc. Chaos 2002 1985 2002

[5] Ataullakhanov F.I., Guriia G.T. Biofizika 1994 89 96

[6] Ataullakhanov F.I., Volkova R.I. Biofizika 1995 1320 1328

[7] Blomback B., Carlsson K. Thromb Res. 1994 521 538

[8] Carr Jr. M.E., Hardin C.L. Amer. J. Physiol. 1987 1069 1073

[9] Carr Jr M.E., Hermans J. Macromolecules 1978 46 50

[10] C.E. Dempfle, P.N. Knoebl. Blood coagulation and inflammation in critical illness the importance of the protein C pathway. UNI-MED, Bremen, 2008.

[11] Diamond S.L. Ann. Rev. Biomed. Engrg 1999 427 461

[12] M. Doi, S.F. Edwards. Theory of polymer dynamics. Acad. Press, New York, 1986.

[13] Ermakova E.A., Panteleev M.A., Shnol E.E. Pathophysiol. Haemost. Thromb. 2005 135 142

[14] P.-G. de Gennes. Scaling concepts in polymer physics. Cornell, London, 1979.

[15] Hantgan R.R., Hermans J. J. Biol. Chem. 1979 11272 11281

[16] Kita R., Takahashi A. Biomacromolecules 2002 1013 1020

[17] Marchi R., Meyer M. Blood Coagul. Fibrinolys. 2004 285 293

[18] G. Marx Med. Biol. Engrg. Comput. 2006 79 85

[19] L Medved’, T Ugarova J. Mol. Biol. 1990 503 509

[20] Mosesson M.W., Diorio J.P. Blood 1993 1517 1521

[21] Mosesson M.W. J. Thromb. Haemost. 2005 1894 1904

[22] Panteleev M.A., Ovanesov M.V. Biophys. J. 2006 1489 1500

[23] G.G. Tsipkin. Flows with phase transitions in porous media. Fizmatlit, Moscow, 2009 (in Russian).

[24] Weisel J.W. Adv. Protein Chem. 2005 247 299

[25] Weisel J.W., Nagaswami C., Makowski L. Proc. Nat. Acad. Sci. USA 1987

[26] D.M. Zubairov. Molecular basis of clotting and thrombus formation. Fen Press, Kazan, 2000 (in Russian).

Cité par Sources :