Using normal mode analysis in teaching mathematical modeling to biology students
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 278-294.

Voir la notice de l'article provenant de la source EDP Sciences

Linear oscillators are used for modeling a diverse array of natural systems, for instance acoustics, materials science, and chemical spectroscopy. In this paper I describe simple models of structural interactions in biological molecules, known as elastic network models, as a useful topic for undergraduate biology instruction in mathematical modeling. These models use coupled linear oscillators to model the fluctuations of molecular structures around the equilibrium state. I present many learning activities associated with building and understanding these models, ranging from analytical to computational. I provide a number of web resources where students can obtain structural data, perform calculations, and suggest research directions for independent projects.
DOI : 10.1051/mmnp/20116615

D. A. Kondrashov 1

1 University of Chicago, BSCD, 924 E 57th St, Chicago, IL 60637, USA
@article{MMNP_2011_6_6_a14,
     author = {D. A. Kondrashov},
     title = {Using normal mode analysis in teaching mathematical modeling to biology students},
     journal = {Mathematical modelling of natural phenomena},
     pages = {278--294},
     publisher = {mathdoc},
     volume = {6},
     number = {6},
     year = {2011},
     doi = {10.1051/mmnp/20116615},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116615/}
}
TY  - JOUR
AU  - D. A. Kondrashov
TI  - Using normal mode analysis in teaching mathematical modeling to biology students
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 278
EP  - 294
VL  - 6
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116615/
DO  - 10.1051/mmnp/20116615
LA  - en
ID  - MMNP_2011_6_6_a14
ER  - 
%0 Journal Article
%A D. A. Kondrashov
%T Using normal mode analysis in teaching mathematical modeling to biology students
%J Mathematical modelling of natural phenomena
%D 2011
%P 278-294
%V 6
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116615/
%R 10.1051/mmnp/20116615
%G en
%F MMNP_2011_6_6_a14
D. A. Kondrashov. Using normal mode analysis in teaching mathematical modeling to biology students. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 278-294. doi : 10.1051/mmnp/20116615. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116615/

[1] A. Atilgan, S. Durell, R. Jernigan, M. Demirel, O. Keskin, I. Bahar Biophysical Journal 2001 505 515

[2] I. Bahar, A. R. Atilgan, B. Erman Folding and Design 1997 173 181

[3] I. Bahar, A. Rader Current Opinion in Structural Biology 2005 586 592

[4] Q. Cui and I. Bahar. Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems. Chapman and Hall/CRC, 1 ed., 2005.

[5] J. L. Dunn Journal of Chemical Education 2010 819 822

[6] D. A. Kondrashov, Q. Cui, and G. N. Phillips, Jr. Optimization and evaluation of a coarse-grained model of protein motion using X-Ray crystal data. Biophysical Journal, 91 (2006), 2760–2767.

[7] D. A. Kondrashov, A. W. Van Wynsberghe, R. M. Bannenl, Q. Cui, G. N. Phillips Structure 2007 169 177

[8] W. G. Krebs, V. Alexandrov, C. A. Wilson, N. Echols, H. Yu, M. Gerstein Proteins: Structure, Function, and Genetics 2002 682 695

[9] L. Orellana, M. Rueda, C. Ferrer-Costa, J. Lopez-Blanco, P. Chacon, M. Orozco Journal of Chemical Theory and Computation 2010 2910 2923

[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes: The art of scientific computing. Cambridge University Press, Cambridge, 3rd ed, 2007.

[11] K. Suhre, Y. Sanejouand Nucleic Acids Research 2004 W610 W614

[12] M. M. Tirion Physical Review Letters 1996 1905 1915

[13] A. W. Van Wynsberghe, Q. Cui Structure 2006 1647 1653

[14] L. Yang, I. Bahar Structure 2005 893 904

[15] L. Yang, X. Liu, C. J. Jursa, M. Holliman, A. Rader, H. A. Karimi, I. Bahar Bioinformatics 2005 2978

Cité par Sources :