A Team Approach to Undergraduate Research in Biomathematics: Balance Control
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 260-277.

Voir la notice de l'article provenant de la source EDP Sciences

The question, how does an organism maintain balance? provides a unifying theme to introduce undergraduate students to the use of mathematics and modeling techniques in biological research. The availability of inexpensive high speed motion capture cameras makes it possible to collect the precise and reliable data that facilitates the development of relevant mathematical models. An in–house laboratory component ensures that students have the opportunity to directly compare prediction to observation and motivates the development of projects that push the boundaries of the subject. The projects, by their nature, readily lend themselves to the formation of inter–disciplinary student research teams. Thus students have the opportunity to learn skills essential for success in today’s workplace including productive team work, critical thinking, problem solving, project management, and effective communication.
DOI : 10.1051/mmnp/20116614

J. Milton 1 ; A. Radunskaya 2 ; W. Ou 3 ; T. Ohira 1

1 Joint Science Department of Claremont McKenna, Pitzer and Scripps Colleges
2 W. M. Keck Science Center, 925 N. Mills Ave. Claremont, CA 91711, USA
3 Department of Mathematics, Pomona College, 610 North College Ave., Claremont, CA 91711 USA
@article{MMNP_2011_6_6_a13,
     author = {J. Milton and A. Radunskaya and W. Ou and T. Ohira},
     title = {A {Team} {Approach} to {Undergraduate} {Research} in {Biomathematics:} {Balance} {Control}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {260--277},
     publisher = {mathdoc},
     volume = {6},
     number = {6},
     year = {2011},
     doi = {10.1051/mmnp/20116614},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116614/}
}
TY  - JOUR
AU  - J. Milton
AU  - A. Radunskaya
AU  - W. Ou
AU  - T. Ohira
TI  - A Team Approach to Undergraduate Research in Biomathematics: Balance Control
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 260
EP  - 277
VL  - 6
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116614/
DO  - 10.1051/mmnp/20116614
LA  - en
ID  - MMNP_2011_6_6_a13
ER  - 
%0 Journal Article
%A J. Milton
%A A. Radunskaya
%A W. Ou
%A T. Ohira
%T A Team Approach to Undergraduate Research in Biomathematics: Balance Control
%J Mathematical modelling of natural phenomena
%D 2011
%P 260-277
%V 6
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116614/
%R 10.1051/mmnp/20116614
%G en
%F MMNP_2011_6_6_a13
J. Milton; A. Radunskaya; W. Ou; T. Ohira. A Team Approach to Undergraduate Research in Biomathematics: Balance Control. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 260-277. doi : 10.1051/mmnp/20116614. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116614/

[1] D. Acheson. From Calculus to Chaos: An introduction to dynamics. Oxford University Press, New York (1998).

[2] A. Armenti, Jr., editor. The Physics of Sports. American Institute of Physics, New York (1992).

[3] Y. Asai, Y. Tasaka, K. Nomura, T. Nomura, M. Casidio, P. Morasso A model of postural control in quiet standing: Robust compensation of delay–induced instability using intermittent activation of feedback control. PLoS ONE 4 (2009), e6169.

[4] G. L. Baker, J. A. Blackburn. The pendulum: a case study in physics. Oxford University Press, New York, 2005.

[5] H. C. Berg. Random walks in biology. Princeton University Press, New Jersey (1993).

[6] A. Bottaro, Y. Yasutake, T. Nomura, M. Casidio, P. Morasso Human Movement Science 2008 473 495

[7] R. Bormann, J. L. Cabrera, J. G. Milton, C. W. Eurich Neurocomputing 2004 517 523

[8] J. Boulet, R. Balasubramiam, A. Daffertshofer, A. Longtin Phil. Trans. Roy. Soc. A 2010 423 438

[9] J. L. Cabrera, J. G. Milton Phys. Rev. Lett. 2002 158702

[10] J. L. Cabrera, J. G. Milton CHAOS 2004 691

[11] J. L. Cabrera, R. Bormann, C. Eurich, T. Ohira, J. Milton Fluct. Noise Lett. 2004 L107 L118

[12] S. A. Campbell, S. Crawford, K. Morris J. Dyn. Syst. Meas. Control. 2008 054502

[13] J. J. Chiel, R. D. Beer TINS 1997 553 557

[14] T. Cluff, R. Balasubramania R. PLoS One 2009

[15] V. De Silva, J. B. Tenenbaum, J. C. Langford Science 2000 2319 2323

[16] T. M. H. Dijkstra, H. Katsumata, D. Sternad Nonlinear Studies 2004 319 344

[17] B. Ermentrout. Simulating, Analyzing, and Animating Dynamical Systems. SIAM, Philadelphia (2002).

[18] C. W. Eurich, J. G. Milton Jg Phys. Rev. E 1996 6681 6684

[19] C. W. Eurich, K. Pawelzik. Optimal control yields power laws. In Artificial Neural Networks: Formal Models and Their Applications, Springer Lecture Notes in Computer Science Vol. 3697, edited by W. Duch, J. Kacprzyk, E. Oja and S. Zadronzny (Springer–Verlag, Berlin, 2005), pp. 365–370.

[20] P. Foo, J. A. S. Kelso, G. D. De Guzman J. Exp. Psychol. Hum. Percept. Perform. 2000 1281 1297

[21] J. Guckenheimer IEEE Trans. Automatic Control 1995 321 326

[22] T. Insperger Commun. Nonlinear Sci. Numer. Simulat. 2011 2160 2168

[23] A. Kamimura, T. Ohira New J. Physics 2010 053013

[24] T. A. Kuiken, L. A. Miller, R. D. Lipschutz, B. A. Lock, K. Stubblefield, P. D. Marasso, P. Zhou, G. A. Dumanian Lancet 2007 371 380

[25] A. D. Kuo Hum. Mov. Sci. 2007 617 656

[26] S. S. Lafon. Diffusion Maps and Geometric Harmonics. PhD thesis, Yale University, 2004.

[27] M. Landry, S. A. Campbell, K. Morris, C. O. Aguilar SIAM J. Appl. Dyn. Sys. 2005 333 351

[28] D. B. Lockhart, L. H. Ting Nat. Neurosci. 2007 1329 1336

[29] I. D. Loram, M. Lackie J. Physiol. (London) 2002 1111 1124

[30] I. D. Loram, C. N. Maganaris, M. Lakie J. Physiol. (London) 2005 295 311

[31] J. Maynard Smith. Mathematical Ideas in Biology. Cambridge University Press, New York (1968).

[32] T. A. McMahon. Muscles, Reflexes and Locomotion. Princeton University Press, New Jersey (1984).

[33] B. Mehta, S. Schaal J. Neurophysiol. 2002 942 953

[34] J. G. Milton, S. S. Small, A. Solodkin J. Clin. Neurophysiol. 2004 134 143

[35] J. G. Milton, J. L. Cabrera, T. Ohira Europhys. Lett. 2008 48001

[36] J. G. Milton, T. Ohira, J. L. Cabrera, R. M. Fraiser, J. B. Gyorffy, F. K. Ruiz, M. A. Strauss, E. C. Balch, P. J. Marin, J. L. Alexander PLOS One 2009

[37] J. Milton, J. L. Cabrera, T. Ohira, S. Tajima, Y. Tonosaki, C. W. Eurich, S. A. Campbell Chaos 2009 026110

[38] J. Milton, J. L. Townsend, M. A. King, T. Ohira Phil. Trans. Roy. Soc. A 2009 1181 1193

[39] J. Milton, J. Gyorffy, J. L. Cabrera, T. Ohira. Amplitude control of human postural sway using Achilles tendon vibration. 16th US National Congress of Theoretical and Applied Mechanics (2010). State College, PA (USNCTAM2010–791).

[40] J. G. Milton, A. E. Radunskaya, A. H. Lee, L. G. De Pillis, D. F. Bartlett CBE–Life Sciences Education 2010 316 322

[41] J. Milton, P. Naik, C. Chan, S. A. Campbell Math. Model. Nat. Phenom. 2010 125 145

[42] J. Milton, J. Lippai, R. Bellows, A. Blomberg, A. Kamimura, T. Ohira. Visuomotor tracking tasks with delayed pursuit and escape. 8th International Conference on Multibody Systems, Nonlinear Dynamics and Control (2011). Washington, D. C. (DETC2011-47312).

[43] P. J. Nahin PJ. Chases and escapes: The mathematics of pursuit and evasion. Princeton University Press, Princeton, New Jersey (2007).

[44] http://www.gnu.org/software/octave/

[45] T. Ohira, J. Milton. Delayed random walks: Investigating the interplay between noise and delays. In: Delay Differential Equations: Recent Advances and New Directions, edited by B. Balachandran, T. Kalmár–Nagy and D. E. Gilman, Springer–Verlag, New York, pp. 305–335 (2009).

[46] F. Patzelt, M. Riegel, U. Ernst, K. Pawelzik Front. Comp. Neurosci. 2007 1 9

[47] I. J. Pinter, R. Von Swigchem, A. J. Knoek Van Soet, L. A. Rozendaal J. Neurophysiol. 2008 3197 3208

[48] A. B. Pippard Eur. J. Physics 1987 203 206

[49] http://pydelay.sourceforge.net/

[50] https://code.astraw.com/projects/PyUniversalLibrary/

[51] http://www.sagemath.org/

[52] http://www.scipy.org/

[53] S. H. Scott Nature Rev, Neurosci. 2004 534 546

[54] J. R. Stirling, M. S. Zakynthinaki Chaos 2004 96 105

[55] G. Stepan Phil. Trans. Roy. Soc. A 2009 1195 1212

[56] N. Stepp Exp. Brain Res. 2009 521 525

[57] A. Straw. An open–source library for realtime visual stimulus generation. Frontiers Neuroinformatics 11 (2008): doi: 10.3389.neuro.11.004:2008.

[58] A. D. Straw, M. H. Dickinson. Motmot, an open–source toolkit for realtime video acquisition and analysis. Source Code for Biology and Medicine (2010). doi: 10.1186/1751-0473-4-5.

[59] T. Vicsek Nature 2010 43 44

[60] S. Vogel. Comparative Biomechanics: Life’s physical world. Princeton University Press, New Jersey (2003).

[61] H. U. Voss Phys. Rev. E 2000 5115 5119

[62] D. A. Winter, A. E. Patla, F. Prince, M. Ishac, K. Gielo–Perczak J. Neurophysiol. 1998 1211 1221

[63] M. S. Zakynthinaki, J. M. Madera Milla, A. López De Durana, C. A. Cordent Martinez, G. Rodriguez Romo, M. Stillero Quintana, J. Samperd Molinuevo Chaos 2010 013118

[64] V. Zatsiorsky. Biomechanics in Sports: Performance enhancement and injury prevention. Blackwell Science, Malden, MA (2000).

Cité par Sources :