Compartmental Models of Migratory Dynamics
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 245-259.

Voir la notice de l'article provenant de la source EDP Sciences

Compartmentalization is a general principle in biological systems which is observable on all size scales, ranging from organelles inside of cells, cells in histology, and up to the level of groups, herds, swarms, meta-populations, and populations. Compartmental models are often used to model such phenomena, but such models can be both highly nonlinear and difficult to work with.Fortunately, there are many significant biological systems that are amenable to linear compartmental models which are often more mathematically accessible. Moreover, the biology and mathematics is often so intertwined in such models that one can be used to better understand the other. Indeed, as we demonstrate in this paper, linear compartmental models of migratory dynamics can be used as an exciting and interactive means of introducing sophisticated mathematics, and conversely, the associated mathematics can be used to demonstrate important biological properties not only of seasonal migrations but also of compartmental models in general.We have found this approach to be of great value in introducing derivatives, integrals, and the fundamental theorem of calculus. Additionally, these models are appropriate as applications in a differential equations course, and they can also be used to illustrate important ideas in probability and statistics, such as the Poisson distribution.
DOI : 10.1051/mmnp/20116613

J. Knisley 1, 2 ; T. Schmickl 3 ; I. Karsai 1, 4

1 The Institute for Quantitative Biology, East Tennessee State University
2 Mathematics and Statistics, East Tennessee State University, Johnson City, TN 37614 USA
3 Artificial Life Lab of the Department of Zoology, Karl-Franzens-University
4 Biological Sciences, East Tennessee State University, Johnson City, TN 37614 USA
@article{MMNP_2011_6_6_a12,
     author = {J. Knisley and T. Schmickl and I. Karsai},
     title = {Compartmental {Models} of {Migratory} {Dynamics}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {245--259},
     publisher = {mathdoc},
     volume = {6},
     number = {6},
     year = {2011},
     doi = {10.1051/mmnp/20116613},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116613/}
}
TY  - JOUR
AU  - J. Knisley
AU  - T. Schmickl
AU  - I. Karsai
TI  - Compartmental Models of Migratory Dynamics
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 245
EP  - 259
VL  - 6
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116613/
DO  - 10.1051/mmnp/20116613
LA  - en
ID  - MMNP_2011_6_6_a12
ER  - 
%0 Journal Article
%A J. Knisley
%A T. Schmickl
%A I. Karsai
%T Compartmental Models of Migratory Dynamics
%J Mathematical modelling of natural phenomena
%D 2011
%P 245-259
%V 6
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116613/
%R 10.1051/mmnp/20116613
%G en
%F MMNP_2011_6_6_a12
J. Knisley; T. Schmickl; I. Karsai. Compartmental Models of Migratory Dynamics. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 245-259. doi : 10.1051/mmnp/20116613. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116613/

[1] M. Allarakhia, A. Wensley Technology Management: A Unifying Discipline for Melting the Boundaries 2005 262 274

[2] L. Allen. An Introduction to mathematical biology, Pearson, New York, 2007.

[3] S. Bauer, Z. Barta, B. Ens, G. Hays, J. Mcnamara, M. Klassen Biol. Lett. 2009 433 435

[4] R. Baxter Ann. Rev. Ecol. Syst. 1977 255 93

[5] W. Bialek, D. Botstein Science 2004 788 790

[6] J. Bower. Looking for Newton: realistic modeling in modern biology. Brains, Minds and Media, 1 (2005), bmm217 (urn:nbn:de:0009-3-2177).

[7] V. Buonaccorsi, A. Skibiel Teach. Stat 2005 8 10

[8] C. Cobelli Math. Biosci. 1984 263 289

[9]

[10] J. Crow and M. Kimura. An Introduction to Population Genetics Theory. Harper Row, New York, 1970.

[11] M. Evans, N. Hastings, B. Peacock. Erlang distribution. Ch. 12 in Statistical Distributions, 3rd ed., Wiley, New York, 2000, 71–73.

[12] A. Ford. Modeling the environment. Island Press, 2010.

[13] W. Granta, J. Matisb, T. Millerb Ecological Modeling 1991 1 15

[14] L. Gross BioScience 1994 59

[15] P. Higgs Physical Review E 1995 95 101

[16] W. Hwang, Y. Cho, A. Zhang, M. Ramanathan. A novel functional module detection algorithm for protein-protein interaction networks. Algorithms for Molecular Biology (2006), No. 2, 24, doi:10.1186/1748-7188-1-24.

[17] J. Jacquez. Compartmental Analysis in Biology and Medicine, 3rd ed., Biomedware, Ann Arbor, MI, 1996.

[18] I. Karsai, G. Kampis BioScience 2010 632 638

[19] J. Knisley. Netlogo Migration Simulations, http://math.etsu.edu/symbiosis/migrations, (2011).

[20] J. Knisley, I. Karsai, A. Godbole, M. Helfgott, K. Joplin, E. Seier, D. Moore, H. Miller. Storytelling in the Symbiosis Project. To appear in Undergraduate Mathematics for the Life Sciences: Processes, Models, Assessment, and Directions, MAA Lecture Notes, 2010.

[21] J. Knisley The Mathematics Educator 2002 11 16

[22] D. Lauffenburger. Receptors. Oxford University Press, Oxford, 1993.

[23] M. Malice, C. Lefevre Bulletin of Mathematical Biology 1985 287 293

[24] D. Moore, M. Helfgott, A. Godbole, K. Joplin, I. Karsai, J. Knisley, H. Miller, E. Seier. Creating Quantitative Biologists: The Immediate Future of SYMBIOSIS. To appear in Undergraduate Mathematics for the Life Sciences: Processes, Models, Assessment, and Directions, MAA Lecture Notes, 2010.

[25] J. Murray. Mathematical Biology. Springer, New York, 1989.

[26] W. Reed, B. Hughes Theoretical Biology and Medical Modeling 2007 12

[27] L. Steen, ed. Math Bio 2010: Linking Undergraduate Disciplines. Mathematical Association of America, Washington, DC, 2005.

[28] D. Usher, T. Driscoll, P. Dhurjati, J. Pelesko, L. Rossi, G. Schleiniger, K. Pusecker, H. White CBE Life Sci Educ. 2010 181 188

[29] D. Welch, E. Rechisky, M. Melnychuk, A. Porter, C. Walters PLoS Biol 2008 e265

[30] U. Wilensky. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL, (1999).

Cité par Sources :