Voir la notice de l'article provenant de la source EDP Sciences
J. Knisley 1, 2 ; T. Schmickl 3 ; I. Karsai 1, 4
@article{MMNP_2011_6_6_a12, author = {J. Knisley and T. Schmickl and I. Karsai}, title = {Compartmental {Models} of {Migratory} {Dynamics}}, journal = {Mathematical modelling of natural phenomena}, pages = {245--259}, publisher = {mathdoc}, volume = {6}, number = {6}, year = {2011}, doi = {10.1051/mmnp/20116613}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116613/} }
TY - JOUR AU - J. Knisley AU - T. Schmickl AU - I. Karsai TI - Compartmental Models of Migratory Dynamics JO - Mathematical modelling of natural phenomena PY - 2011 SP - 245 EP - 259 VL - 6 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116613/ DO - 10.1051/mmnp/20116613 LA - en ID - MMNP_2011_6_6_a12 ER -
%0 Journal Article %A J. Knisley %A T. Schmickl %A I. Karsai %T Compartmental Models of Migratory Dynamics %J Mathematical modelling of natural phenomena %D 2011 %P 245-259 %V 6 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116613/ %R 10.1051/mmnp/20116613 %G en %F MMNP_2011_6_6_a12
J. Knisley; T. Schmickl; I. Karsai. Compartmental Models of Migratory Dynamics. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 245-259. doi : 10.1051/mmnp/20116613. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116613/
[1] Technology Management: A Unifying Discipline for Melting the Boundaries 2005 262 274
,[2] L. Allen. An Introduction to mathematical biology, Pearson, New York, 2007.
[3] Biol. Lett. 2009 433 435
, , , , ,[4] Ann. Rev. Ecol. Syst. 1977 255 93
[5] Science 2004 788 790
,[6] J. Bower. Looking for Newton: realistic modeling in modern biology. Brains, Minds and Media, 1 (2005), bmm217 (urn:nbn:de:0009-3-2177).
[7] Teach. Stat 2005 8 10
,[8] Math. Biosci. 1984 263 289
[9]
[10] J. Crow and M. Kimura. An Introduction to Population Genetics Theory. Harper Row, New York, 1970.
[11] M. Evans, N. Hastings, B. Peacock. Erlang distribution. Ch. 12 in Statistical Distributions, 3rd ed., Wiley, New York, 2000, 71–73.
[12] A. Ford. Modeling the environment. Island Press, 2010.
[13] Ecological Modeling 1991 1 15
, ,[14] BioScience 1994 59
[15] Physical Review E 1995 95 101
[16] W. Hwang, Y. Cho, A. Zhang, M. Ramanathan. A novel functional module detection algorithm for protein-protein interaction networks. Algorithms for Molecular Biology (2006), No. 2, 24, doi:10.1186/1748-7188-1-24.
[17] J. Jacquez. Compartmental Analysis in Biology and Medicine, 3rd ed., Biomedware, Ann Arbor, MI, 1996.
[18] BioScience 2010 632 638
,[19] J. Knisley. Netlogo Migration Simulations, http://math.etsu.edu/symbiosis/migrations, (2011).
[20] J. Knisley, I. Karsai, A. Godbole, M. Helfgott, K. Joplin, E. Seier, D. Moore, H. Miller. Storytelling in the Symbiosis Project. To appear in Undergraduate Mathematics for the Life Sciences: Processes, Models, Assessment, and Directions, MAA Lecture Notes, 2010.
[21] The Mathematics Educator 2002 11 16
[22] D. Lauffenburger. Receptors. Oxford University Press, Oxford, 1993.
[23] Bulletin of Mathematical Biology 1985 287 293
,[24] D. Moore, M. Helfgott, A. Godbole, K. Joplin, I. Karsai, J. Knisley, H. Miller, E. Seier. Creating Quantitative Biologists: The Immediate Future of SYMBIOSIS. To appear in Undergraduate Mathematics for the Life Sciences: Processes, Models, Assessment, and Directions, MAA Lecture Notes, 2010.
[25] J. Murray. Mathematical Biology. Springer, New York, 1989.
[26] Theoretical Biology and Medical Modeling 2007 12
,[27] L. Steen, ed. Math Bio 2010: Linking Undergraduate Disciplines. Mathematical Association of America, Washington, DC, 2005.
[28] CBE Life Sci Educ. 2010 181 188
, , , , , , ,[29] PLoS Biol 2008 e265
, , , ,[30] U. Wilensky. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL, (1999).
Cité par Sources :