Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2011_6_6_a11, author = {G. A. Koch-Noble}, title = {Drugs in the {Classroom:} {Using} {Pharmacokinetics} to {Introduce} {Biomathematical} {Modeling}}, journal = {Mathematical modelling of natural phenomena}, pages = {227--244}, publisher = {mathdoc}, volume = {6}, number = {6}, year = {2011}, doi = {10.1051/mmnp/20116612}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116612/} }
TY - JOUR AU - G. A. Koch-Noble TI - Drugs in the Classroom: Using Pharmacokinetics to Introduce Biomathematical Modeling JO - Mathematical modelling of natural phenomena PY - 2011 SP - 227 EP - 244 VL - 6 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116612/ DO - 10.1051/mmnp/20116612 LA - en ID - MMNP_2011_6_6_a11 ER -
%0 Journal Article %A G. A. Koch-Noble %T Drugs in the Classroom: Using Pharmacokinetics to Introduce Biomathematical Modeling %J Mathematical modelling of natural phenomena %D 2011 %P 227-244 %V 6 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116612/ %R 10.1051/mmnp/20116612 %G en %F MMNP_2011_6_6_a11
G. A. Koch-Noble. Drugs in the Classroom: Using Pharmacokinetics to Introduce Biomathematical Modeling. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 227-244. doi : 10.1051/mmnp/20116612. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116612/
[1] Abbott Laboratories. Synthroid® Product Insert/Physician Information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021402s017lbl.pdf (accessed 11 October 2010). North Chicago, 2008.
[2] Anonymous reviewer comments, received December 2010.
[3] D. M. Bressoud. “Personal Thoughts on Mature Teaching." In How to Teach Mathematics by S.G. Krantz. 2nd ed., 173–181. American Mathematical Society, Providence, 1999.
[4] Duramed Pharm., Inc. Aygestin® Product Insert/Physician Information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2007/018405s023lbl.pdf (accessed 11 October 2010). Pomona, 2007.
[5] G. A. Koch. Pharmacokinetics. A module of the Biological ESTEEM Collection, published by the BioQUEST Curriculum Consortium. http://bioquest.org/esteem/esteem_details.php?product_id=39111 (accessed 23 September 2011). 2011.
[6] S. G. Krantz. How to Teach Mathematics. 2nd ed. American Mathematical Society, Providence, 1999.
[7] V.Neufeldt D. B. Guralnik (ed). Webster’s New World College Dictionary. 3rd ed. Macmillian, New York, 1997.
[8] C. Neuhauser. Calculus for Biology and Medicine. 2nd ed. Pearson Education, Upper Saddle River, 2004.
[9] Pharmacia Upjohn Company. depo-subQ provera 104Product Insert/Physician Information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021583s011lbl.pdf (accessed 11 October 2010). New York, 2009.
[10] J. C. Polking. PPLANE 2005.10. http://math.rice.edu/~dfield/dfpp.html (accessed 10 October 2010). 1994-2005.
[11] R. S. Robeva, et al. An Invitation to Biomathematics. Academic Press (Elsevier), Burlington, 2008.
[12] R. S. Robeva, et al. Laboratory Manual of Biomathematics. Academic Press (Elsevier), Burlington, 2008.
[13] E. Spitznagel. Two-Compartment Pharmacokinetics Models. C-ODE-E. Harvey Mudd College, Fall 1992.
[14] S. H. Strogatz. Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering. Addison-Wesley, Reading, 1994.
[15] U. S.Food and Drug Administration. Drugs@FDA. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm (accessed 11 October 2010). 2010.
[16] U. S.Food and Drug Administration. New Drug Application. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/NewDrugApplicationNDA/default.htm (accessed 10 October 2010). 2010.
[17] A. E. Weisstein. Continuous Growth Models. A module of the Biological ESTEEM Collection, published by the BioQUEST Curriculum Consortium. http://bioquest.org/esteem/esteem_details.php?product_id=197 (accessed 10 October 2010). 2005.
[18] A. E. Weisstein. SIR Model. A module of the Biological ESTEEM Project, published by the BioQUEST Curriculum Consortium. http://bioquest.org/esteem/esteem_details.php?product_id=196 (accessed 10 October 2010). 2003.
[19] E. K. Yeargers. An Introduction to the Mathematics of Biology: With Computer Algebra Models. Birkhäuser, Boston, 1996.
Cité par Sources :