Classroom Manipulative to Engage Students in Mathematical Modeling of Disease Spread: 1+1 = Achoo!
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 215-226.

Voir la notice de l'article provenant de la source EDP Sciences

Infectious diseases ranging from the common cold to cholera affect our society physically, emotionally, ecologically, and economically. Yet despite their importance and impact, there remains a lack of effective teaching materials for epidemiology and disease ecology in K-12, undergraduate, and graduate curricula []. To address this deficit, we’ve developed a classroom lesson with three instructional goals: (1) Familiarize students on basic concepts of infectious disease ecology; (2) Introduce students to a classic compartmental model and its applications in epidemiology; (3) Demonstrate the application and importance of mathematical modeling as a tool in biology. The instructional strategy uses a game-based mathematical manipulative designed to engage students in the concepts of infectious disease spread. It has the potential to be modified for target audiences ranging from Kindergarten to professional schools in science, public health, policy, medical, and veterinarian programs. In addition, we’ve provided variations of the activity to enhance the transfer of fundamental concepts covered in the initial lesson to more complex concepts associated with vaccination and waning immunity. While 10 variations are presented here, the true number of directions in which the game might extend will only be limited by the imagination of its students [].
DOI : 10.1051/mmnp/20116611

H. Gaff 1 ; M. Lyons 2 ; G. Watson 3

1 Department of Biological Sciences
2 Department of Department of Ocean, Earth and Atmospheric Sciences
3 Darden College of Education
@article{MMNP_2011_6_6_a10,
     author = {H. Gaff and M. Lyons and G. Watson},
     title = {Classroom {Manipulative} to {Engage} {Students} in {Mathematical} {Modeling} of {Disease} {Spread:} 1+1 = {Achoo!}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {215--226},
     publisher = {mathdoc},
     volume = {6},
     number = {6},
     year = {2011},
     doi = {10.1051/mmnp/20116611},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116611/}
}
TY  - JOUR
AU  - H. Gaff
AU  - M. Lyons
AU  - G. Watson
TI  - Classroom Manipulative to Engage Students in Mathematical Modeling of Disease Spread: 1+1 = Achoo!
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 215
EP  - 226
VL  - 6
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116611/
DO  - 10.1051/mmnp/20116611
LA  - en
ID  - MMNP_2011_6_6_a10
ER  - 
%0 Journal Article
%A H. Gaff
%A M. Lyons
%A G. Watson
%T Classroom Manipulative to Engage Students in Mathematical Modeling of Disease Spread: 1+1 = Achoo!
%J Mathematical modelling of natural phenomena
%D 2011
%P 215-226
%V 6
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116611/
%R 10.1051/mmnp/20116611
%G en
%F MMNP_2011_6_6_a10
H. Gaff; M. Lyons; G. Watson. Classroom Manipulative to Engage Students in Mathematical Modeling of Disease Spread: 1+1 = Achoo!. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 215-226. doi : 10.1051/mmnp/20116611. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116611/

[1] G. L. Armstrong, L. A. Conn, Robert, W. Pinner JAMA 1999 61 66

[2] C. A. Brewer, A. R. Berkowitz, P. Conrad, J. Porter, M. Waterman. Educating About Infectious Disease Ecology. In: Infectious Disease Ecology. R. S. Ostfeld, F. Keesing, V. T. Eviner (eds.), Princeton University Press, 2000, 448-466.

[3] A. Crosby. America’s forgotten pandemic: the influenza of 1918 (2nd Ed). Cambridge University Press, Cambridge, UK, 2003.

[4] A. M. Fendrick, A. S. Monto, B. Nightengale, M. Sarnes Arch Intern Med 2003 487 494

[5] R. M. Gagne, K. L. Medsker. The Conditions of Learning: Training Applications. Harcourt Brace Co. New York, New York, 1996.

[6] H. Hethcote. A thousand and one epidemic models. In: Frontiers in Mathematical Biology, S. Levin (ed.), Lecture Notes in Biomathematics 100, Springer, Berlin, 1994, 504-515.

[7] D. H. Jonassen. Integrating learning strategies into courseware to facilitate deeper processing. In: Instructional designs for microcomputer courseware. D. H. Jonassen (ed.), Erlbaum, Hillsdale, New Jersey, 1988, 151-182.

[8] J. R. Jungck, H. D. Gaff, A. Weisstein CBE–Life Sciences Education 2010 201 211

Cité par Sources :