Building Mathematical Models and Biological Insight in an Introductory Biology Course
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 198-214.

Voir la notice de l'article provenant de la source EDP Sciences

A growing body of literature testifies to the importance of quantitative reasoning skills in the 21st-century biology curriculum, and to the learning benefits associated with active pedagogies. The process of modeling a biological system provides an approach that integrates mathematical skills and higher-order thinking with existing course content knowledge. We describe a general strategy for teaching model-building in an introductory biology course, using the example of a model of an infectious disease outbreak. Preliminary assessment data suggest that working through the formal process of model construction may help students develop their scientific reasoning and communication skills.
DOI : 10.1051/mmnp/20116610

A. E. Weisstein 1

1 Department of Biology, Truman State University, Kirksville, Missouri 63501, USA
@article{MMNP_2011_6_6_a9,
     author = {A. E. Weisstein},
     title = {Building {Mathematical} {Models} and {Biological} {Insight} in an {Introductory} {Biology} {Course}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {198--214},
     publisher = {mathdoc},
     volume = {6},
     number = {6},
     year = {2011},
     doi = {10.1051/mmnp/20116610},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116610/}
}
TY  - JOUR
AU  - A. E. Weisstein
TI  - Building Mathematical Models and Biological Insight in an Introductory Biology Course
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 198
EP  - 214
VL  - 6
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116610/
DO  - 10.1051/mmnp/20116610
LA  - en
ID  - MMNP_2011_6_6_a9
ER  - 
%0 Journal Article
%A A. E. Weisstein
%T Building Mathematical Models and Biological Insight in an Introductory Biology Course
%J Mathematical modelling of natural phenomena
%D 2011
%P 198-214
%V 6
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116610/
%R 10.1051/mmnp/20116610
%G en
%F MMNP_2011_6_6_a9
A. E. Weisstein. Building Mathematical Models and Biological Insight in an Introductory Biology Course. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 198-214. doi : 10.1051/mmnp/20116610. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116610/

[1] J. Bransford, J. Franks, N. Vye, R. Sherwood (1989). New Approaches to Instruction: Because Wisdom Can’t be Told. In S. Vosiadou A. Ortony (Eds.), Similarity and Analogical Reasoning (pp. 470–497). New York: Cambridge University Press.

[2] P. Burrowes Am. Biol. Teach. 2003 491 502

[3]

[4] H. Ewing, K. Hogan, F. Keesing, H. Bugmann, A. Berkowitz, L. Gross, J. Oris, J. Wright (2003). “The role of modeling in undergraduate education”. Pages 413427 in Canham CD, Cole JJ, Laurenroth WK, eds. Models in Ecosystem Science. Princeton (NJ): Princeton University Press.

[5] S. Freeman. Biological Science, 4th edition. Pearson Benjamin Cummings, San Francisco, 2011.

[6] R. Hake Am. J. Phys. 1998 64 74

[7] J. Hodder, D. Ebert-May, J. Batzli Front. Ecol. Environ. 2006 162 163

[8] G. Johnson (2005). “Infectious Disease and Bioterrorism.” In PH Raven, GB Johnson, J Losos, and S Singer, Biology, 7th edition (Enhancement Chapter 33e). New York, NY: McGraw-Hill.

[9] J. Jungck (2005). “Challenges, Connections, Complexities: Educating for Collaboration”. Pages 1–12 in Math and Bio 2010: Linking Undergraduate Disciplines (ed. LA Steen).

[10] J. Jungck, J. Calley Am. Biol. Teach. 1985 11 15

[11] K. Kastens (2002). My Top Ten Topics in Geoscience Education Research, for a conference on “Bringing Research on Learning to the Geosciences.” http://serc.carleton.edu/files/research_on_learning/KKtopten.pdf (accessed 1/17/2011).

[12] W. Kermack, A. Mckendrick Proc. Roy. Soc. Lond. A 1927 700 721

[13] E. Kitchen, J. Bell, S. Reeve, R. Sudweeks, W. Bradshaw Cell Biol. Educ. 2003 180 194

[14] J. Knight, W. Wood Cell Biol. Educ. 2005 298 310

[15] Lauenroth WK, Burke IC, and Berry JK (2003). “The Status of Dynamic Quantitative Modeling in Ecology”. Pages 32–48 in Canham CD, Cole JJ, Laurenroth WK, eds. Models in Ecosystem Science. Princeton (NJ): Princeton University Press.

[16] M. Meltzer, I. Damon, J. Leduc, J. Millar Emerg. Infect. Dis. 2001 959 969

[17] National Research Council. Bio 2010: Transforming Undergraduate Education for Future Research Biologists. National Academies Press, Washington D.C., 2003.

[18] J. Reece, L. Urry, M. Cain, S. Wasserman, P. Minorsky, and R. Jackson. Campbell Biology, 9th edition. Pearson Benjamin Cummings, San Francisco, 2010.

[19] SENCER: Science Education for New Civic Engagements and Responsibilities.  ⟨ www.sencer.net ⟩ . Accessed 13 January 2011.

[20] J. Trempy, M. Skinner, W. Siebold Microbiol. Educ. 2002 26 36

[21] Turner, MG (2003). “Modeling for Synthesis and Integration: Forests, People, and Riparian Coarse Woody Debris”. Pages 83–110 in Canham CD, Cole JJ, Laurenroth WK, eds. Models in Ecosystem Science. Princeton (NJ): Princeton University Press.

[22] D. Udovic, D. Morris, A. Dickman, J. Postlethwait, P. Wetherwax BioScience 2002 272 281

Cité par Sources :