Unraveling the Tangled Complexity of DNA: Combining Mathematical Modeling and Experimental Biology to Understand Replication, Recombination and Repair
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 108-135.

Voir la notice de l'article provenant de la source EDP Sciences

How does DNA, the molecule containing genetic information, change its three-dimensional shape during the complex cellular processes of replication, recombination and repair? This is one of the core questions in molecular biology which cannot be answered without help from mathematical modeling. Basic concepts of topology and geometry can be introduced in undergraduate teaching to help students understand counterintuitive complex structural transformations that occur in every living cell. Topoisomerases, a fascinating class of enzymes involved in replication, recombination and repair, catalyze a change in DNA topology through a series of highly coordinated mechanistic steps. Undergraduate biology and mathematics students can visualize and explore the principles of topoisomerase action by using easily available materials such as Velcro, ribbons, telephone cords, zippers and tubing. These simple toys can be used as powerful teaching tools to engage students in hands-on exploration with the goal of learning about both the mathematics and the biology of DNA structure.
DOI : 10.1051/mmnp/20116607

S. Robic 1 ; J. R. Jungck 2

1 Department of Biology, Agnes Scott College, Decatur, GA 30030, USA
2 Department of Biology, Beloit College, Beloit, WI 53511, USA
@article{MMNP_2011_6_6_a6,
     author = {S. Robic and J. R. Jungck},
     title = {Unraveling the {Tangled} {Complexity} of {DNA:} {Combining} {Mathematical} {Modeling} and {Experimental} {Biology} to {Understand} {Replication,} {Recombination} and {Repair}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {108--135},
     publisher = {mathdoc},
     volume = {6},
     number = {6},
     year = {2011},
     doi = {10.1051/mmnp/20116607},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116607/}
}
TY  - JOUR
AU  - S. Robic
AU  - J. R. Jungck
TI  - Unraveling the Tangled Complexity of DNA: Combining Mathematical Modeling and Experimental Biology to Understand Replication, Recombination and Repair
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 108
EP  - 135
VL  - 6
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116607/
DO  - 10.1051/mmnp/20116607
LA  - en
ID  - MMNP_2011_6_6_a6
ER  - 
%0 Journal Article
%A S. Robic
%A J. R. Jungck
%T Unraveling the Tangled Complexity of DNA: Combining Mathematical Modeling and Experimental Biology to Understand Replication, Recombination and Repair
%J Mathematical modelling of natural phenomena
%D 2011
%P 108-135
%V 6
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116607/
%R 10.1051/mmnp/20116607
%G en
%F MMNP_2011_6_6_a6
S. Robic; J. R. Jungck. Unraveling the Tangled Complexity of DNA: Combining Mathematical Modeling and Experimental Biology to Understand Replication, Recombination and Repair. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 108-135. doi : 10.1051/mmnp/20116607. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116607/

[1] S. Elrod, W. Stansfield. Schaum’s Outline of Genetics, Fifth Edition. McGraw-Hill, New York, 2010.

[2] R. Brooker, E. Widmaier, L. Graham, P. Stiling. Biology, Second Edition. McGraw-Hill, New York, 2010.

[3] N. Campbell, N. A. Reece, J. B. Jackson, R. B. Cain, M. L. Urry, L. A. Wasserman, S. A. Minorsky. Biology, Ninth Edition. Benjamin Cummings, San Diego, 2011.

[4] P. Karp. Cell and Molecular Biology: Concepts and Experiments, Fifth Edition. Wiley, New York, 2007.

[5] W. H. Elliott, D. C. Elliott. Biochemistry and Molecular Biology, Fourth Edition. Oxford University Press, Oxford, U.K., 2009.

[6] D. W. Sumners, C. Ernst, S. J. Spengler, N. R. Cozzarelli Q. Rev. Biophys. 1995 253 313

[7] N. R. Cozzarelli, J. C. Wang. DNA Topology and Its Biological Effects. Cold Spring Harbor Monograph Series 20, 1990.

[8] G. Balliano, P. Milla Biochemical Education 1997 209 210

[9] J. R. Jungck, H. Gaff, A. E. Weisstein CBE Life Sci Educ. 2010 201 211

[10] J. R. Roberts, E. Hagedorn, P. Dillenburg, M. Patrick, T. Herman Biochemistry and Molecular Biology Education 2005 105 110

[11] T. Herman, J. Morris, S. Colton, A. Batiza, M. Patrick, M. Franzen, D. S. Goodsell Biochem. Mol. Biol. Educ. 2006 247 254

[12] “kitefrog". Möbius Strip: New Discoveries. 2011 (2008).

[13] E. Babaev, Intuitive Chemical Topology Concepts (Chapter 5), in: D. Bonchev, R. Rouvray (Eds.), Chemical Topology: Introduction and Fundamentals. Gordon and Breach, 1999, pp. 167–264.

[14] A. D. Bates, A. Maxwell. DNA Topology. Oxford University Press, New York, 2005.

[15] T. C. Boles, J. H. White, N. R. Cozzarelli J. Mol. Biol. 1990 931 951

[16] C. D. Hardy, N. J. Crisona, M. D. Stone, N. R. Cozzarelli Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2004 39 47

[17] J. M. Fogg, N. Kolmakova, I. Rees, S. Magonov, H. Hansma, J. J. Perona, E. L. Zechiedrich J. Phys. Condens Matter. 2006 S145 S159

[18] J. Arsuaga, M. Vazquez, P. Mcguirk, S. Trigueros, D. Sumners, J. Roca Proc. Natl. Acad. Sci. U. S. A. 2005 9165 9169

[19] H. Willenbrock, D. W. Ussery. Chromatin architecture and gene expression in Escherichia coli. Genome Biol. 5 (2004), 252.

[20] J. H. White American Journal of Mathematics. 1969 693 728

[21] W. R. Bauer, F. H. Crick, J. H. White Sci. Am. 1980 100 113

[22] T. T. Eckdahl The American Biology Teacher. 1999 214 216

[23] J. M. Fogg, D. J. Catanese, G. L. Randall, M. C. Swick, L. Zechiedrich. Differences between positively and negatively supercoiled DNA that topoisomerases may distinguish (Chapter), in Mathematics of DNA Structure, Function and Interactions The IMA Volumes in Mathematics and its Applications, 150 (2009), 73–121.

[24] G. Witz, A. Stasiak Nucl. Acids Res. 2010 2119 2133

[25] M. D. F. Kamenetskii. Unraveling DNA: The most important molecule of life, John Wiley Sons, 1997.

[26] A. Sossinsky, G. Weiss. Knots: Mathematics with a twist. Harvard University Press, 2002.

[27] L. Postow, N. J. Crisona, B. J. Peter, C. D. Hardy, N. R. Cozzarelli Proc. Natl. Acad. Sci. USA 2001 8219 8226

[28] L. H. Kauffman, S. Lambropoulou Advances in Applied Mathematics. 2004 199 237

[29] C. Adams. The Knot book: An elementary introduction to the mathematical theory of knots. W.H. Freeman, 1994.

[30] I. K. Darcy, R. G. Scharein, A. Stasiak Nucleic Acids Res. 2008 3515 3521

[31] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu Bull.Amer.Math.Soc.(N.S.). 1985 239 246

[32] J. D. Griffith, H. A. Nash Proc. Natl. Acad. Sci. USA 1985 3124 3128

[33] S. Trigueros, J. Arsuaga, M. E. Vazquez, D. W. Sumners, J. Roca Nucleic Acids Res. 2001 E67 7

[34] J. L. Nitiss Nat Rev Cancer. 2009 338 350

[35] K. D. Corbett, J. M. Berger Annu. Rev. Biophys. Biomol. Struct. 2004 95 118

[36] P. Forterre, D. Gadelle Nucleic Acids Research. 2009 679 692

[37] J. M. Berger, S. J. Gamblin, S. C. Harrison, J. C. Wang Nature. 1996 225 232

[38] C. A. Austin, L. M. Fisher Sci. Prog. 1990 147 161

[39] J. J. Champoux Annu. Rev. Biochem. 2001 369 413

[40] J. Roca Trends Biochem. Sci. 1995 156 160

[41] F. R. Blattner, G. Plunkett Iii, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, Y. Shao Science. 1997 1453 1462

[42] P. H. Von Hippel, E. Delagoutte Bioessays. 2003 1168 1177

[43] A. Worcel, S. Strogatz, D. Riley Proc. Natl. Acad. Sci. USA 1981 1461 1465

[44] L. A. A. Nicholl, D. S. T. Nicholl Journal of Biological Education. 1987 99 103

[45] E. Lieberman-Aiden, N. L. Van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bernstein, M. A. Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, J. Dekker Science. 2009 289 293

[46] A. Y. Grosberg, S. K. Nechaev, E. I. Shakhnovich J.Phys.France. 1988 2095 2100

[47] M. Buenemann, P. Lenz. A geometrical model for DNA organization in bacteria. PLoS ONE. 5 (2010), e13806.

[48] T. A. Shapiro, P.T. Englund Annu. Rev. Microbiol. 1995 117 143

[49] J. Chen, C. A. Rauch, J. H. White, P. T. Englund, N. R. Cozzarelli Cell 1995 61 69

[50] J. Lukes, D. Lys Guilbride, J. Votypka, A. Zikova, R. Benne, P. T. Englund Eukaryotic Cell. 2002 495 502

[51] G. W. Hatfield, C. J. Benham Annu. Rev. Genet. 2002 175 203

[52] A. Vologodskii, N. R. Cozzarelli Biophys. J. 1996 2548 2556

[53] V. V. Rybenkov, C. Ullsperger, A. V. Vologodskii, N. R. Cozzarelli Science. 1997 690 693

[54] A. Vologodskii Nucleic Acids Res. 2009 3125 3133

[55] K. C. Neuman J. Biol. Chem. 2010 18967 18971

[56] G. Muskhelishvili, M. Hütt MBC Systems Biology 2011 40 52

[57] R. Messer, P. Staffin. Topology now! Math Assoc. of America, 2006.

Cité par Sources :