Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2011_6_6_a6, author = {S. Robic and J. R. Jungck}, title = {Unraveling the {Tangled} {Complexity} of {DNA:} {Combining} {Mathematical} {Modeling} and {Experimental} {Biology} to {Understand} {Replication,} {Recombination} and {Repair}}, journal = {Mathematical modelling of natural phenomena}, pages = {108--135}, publisher = {mathdoc}, volume = {6}, number = {6}, year = {2011}, doi = {10.1051/mmnp/20116607}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116607/} }
TY - JOUR AU - S. Robic AU - J. R. Jungck TI - Unraveling the Tangled Complexity of DNA: Combining Mathematical Modeling and Experimental Biology to Understand Replication, Recombination and Repair JO - Mathematical modelling of natural phenomena PY - 2011 SP - 108 EP - 135 VL - 6 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116607/ DO - 10.1051/mmnp/20116607 LA - en ID - MMNP_2011_6_6_a6 ER -
%0 Journal Article %A S. Robic %A J. R. Jungck %T Unraveling the Tangled Complexity of DNA: Combining Mathematical Modeling and Experimental Biology to Understand Replication, Recombination and Repair %J Mathematical modelling of natural phenomena %D 2011 %P 108-135 %V 6 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116607/ %R 10.1051/mmnp/20116607 %G en %F MMNP_2011_6_6_a6
S. Robic; J. R. Jungck. Unraveling the Tangled Complexity of DNA: Combining Mathematical Modeling and Experimental Biology to Understand Replication, Recombination and Repair. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 108-135. doi : 10.1051/mmnp/20116607. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116607/
[1] S. Elrod, W. Stansfield. Schaum’s Outline of Genetics, Fifth Edition. McGraw-Hill, New York, 2010.
[2] R. Brooker, E. Widmaier, L. Graham, P. Stiling. Biology, Second Edition. McGraw-Hill, New York, 2010.
[3] N. Campbell, N. A. Reece, J. B. Jackson, R. B. Cain, M. L. Urry, L. A. Wasserman, S. A. Minorsky. Biology, Ninth Edition. Benjamin Cummings, San Diego, 2011.
[4] P. Karp. Cell and Molecular Biology: Concepts and Experiments, Fifth Edition. Wiley, New York, 2007.
[5] W. H. Elliott, D. C. Elliott. Biochemistry and Molecular Biology, Fourth Edition. Oxford University Press, Oxford, U.K., 2009.
[6] Q. Rev. Biophys. 1995 253 313
, , ,[7] N. R. Cozzarelli, J. C. Wang. DNA Topology and Its Biological Effects. Cold Spring Harbor Monograph Series 20, 1990.
[8] Biochemical Education 1997 209 210
,[9] CBE Life Sci Educ. 2010 201 211
, ,[10] Biochemistry and Molecular Biology Education 2005 105 110
, , , ,[11] Biochem. Mol. Biol. Educ. 2006 247 254
, , , , , ,[12] “kitefrog". Möbius Strip: New Discoveries. 2011 (2008).
[13] E. Babaev, Intuitive Chemical Topology Concepts (Chapter 5), in: D. Bonchev, R. Rouvray (Eds.), Chemical Topology: Introduction and Fundamentals. Gordon and Breach, 1999, pp. 167–264.
[14] A. D. Bates, A. Maxwell. DNA Topology. Oxford University Press, New York, 2005.
[15] J. Mol. Biol. 1990 931 951
, ,[16] Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2004 39 47
, , ,[17] J. Phys. Condens Matter. 2006 S145 S159
, , , , , ,[18] Proc. Natl. Acad. Sci. U. S. A. 2005 9165 9169
, , , , ,[19] H. Willenbrock, D. W. Ussery. Chromatin architecture and gene expression in Escherichia coli. Genome Biol. 5 (2004), 252.
[20] American Journal of Mathematics. 1969 693 728
[21] Sci. Am. 1980 100 113
, ,[22] The American Biology Teacher. 1999 214 216
[23] J. M. Fogg, D. J. Catanese, G. L. Randall, M. C. Swick, L. Zechiedrich. Differences between positively and negatively supercoiled DNA that topoisomerases may distinguish (Chapter), in Mathematics of DNA Structure, Function and Interactions The IMA Volumes in Mathematics and its Applications, 150 (2009), 73–121.
[24] Nucl. Acids Res. 2010 2119 2133
,[25] M. D. F. Kamenetskii. Unraveling DNA: The most important molecule of life, John Wiley Sons, 1997.
[26] A. Sossinsky, G. Weiss. Knots: Mathematics with a twist. Harvard University Press, 2002.
[27] Proc. Natl. Acad. Sci. USA 2001 8219 8226
, , , ,[28] Advances in Applied Mathematics. 2004 199 237
,[29] C. Adams. The Knot book: An elementary introduction to the mathematical theory of knots. W.H. Freeman, 1994.
[30] Nucleic Acids Res. 2008 3515 3521
, ,[31] Bull.Amer.Math.Soc.(N.S.). 1985 239 246
, , , , ,[32] Proc. Natl. Acad. Sci. USA 1985 3124 3128
,[33] Nucleic Acids Res. 2001 E67 7
, , , ,[34] Nat Rev Cancer. 2009 338 350
[35] Annu. Rev. Biophys. Biomol. Struct. 2004 95 118
,[36] Nucleic Acids Research. 2009 679 692
,[37] Nature. 1996 225 232
, , ,[38] Sci. Prog. 1990 147 161
,[39] Annu. Rev. Biochem. 2001 369 413
[40] Trends Biochem. Sci. 1995 156 160
[41] Science. 1997 1453 1462
, , , , , , , , , , , , , , , ,[42] Bioessays. 2003 1168 1177
,[43] Proc. Natl. Acad. Sci. USA 1981 1461 1465
, ,[44] Journal of Biological Education. 1987 99 103
,[45] Science. 2009 289 293
, , , , , , , , , , , , , , , , , ,[46] J.Phys.France. 1988 2095 2100
, ,[47] M. Buenemann, P. Lenz. A geometrical model for DNA organization in bacteria. PLoS ONE. 5 (2010), e13806.
[48] Annu. Rev. Microbiol. 1995 117 143
,[49] Cell 1995 61 69
, , , ,[50] Eukaryotic Cell. 2002 495 502
, , , , ,[51] Annu. Rev. Genet. 2002 175 203
,[52] Biophys. J. 1996 2548 2556
,[53] Science. 1997 690 693
, , ,[54] Nucleic Acids Res. 2009 3125 3133
[55] J. Biol. Chem. 2010 18967 18971
[56] MBC Systems Biology 2011 40 52
,[57] R. Messer, P. Staffin. Topology now! Math Assoc. of America, 2006.
Cité par Sources :