Voir la notice de l'article provenant de la source EDP Sciences
J. Ellis-Monaghan 1 ; G. Pangborn 2
@article{MMNP_2011_6_6_a5, author = {J. Ellis-Monaghan and G. Pangborn}, title = {Using {DNA} {Self-assembly} {Design} {Strategies} to {Motivate} {Graph} {Theory} {Concepts}}, journal = {Mathematical modelling of natural phenomena}, pages = {96--107}, publisher = {mathdoc}, volume = {6}, number = {6}, year = {2011}, doi = {10.1051/mmnp/20116606}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116606/} }
TY - JOUR AU - J. Ellis-Monaghan AU - G. Pangborn TI - Using DNA Self-assembly Design Strategies to Motivate Graph Theory Concepts JO - Mathematical modelling of natural phenomena PY - 2011 SP - 96 EP - 107 VL - 6 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116606/ DO - 10.1051/mmnp/20116606 LA - en ID - MMNP_2011_6_6_a5 ER -
%0 Journal Article %A J. Ellis-Monaghan %A G. Pangborn %T Using DNA Self-assembly Design Strategies to Motivate Graph Theory Concepts %J Mathematical modelling of natural phenomena %D 2011 %P 96-107 %V 6 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116606/ %R 10.1051/mmnp/20116606 %G en %F MMNP_2011_6_6_a5
J. Ellis-Monaghan; G. Pangborn. Using DNA Self-assembly Design Strategies to Motivate Graph Theory Concepts. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 96-107. doi : 10.1051/mmnp/20116606. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116606/
[1] Science 1994 1021 1024
[2] Nature 1991 631 633
,[3] Science 2009 725 730
, ,[4] Congressus Numerantium 2004 181 192
[5] J. Ellis-Monaghan, G. Pangborn, L. Beaudin, N. Bruno, A. Hashimoto, B. Hopper, P. Jarvis, D. Miller. Minimal tile and bond-edge types for self-assembling DNA graphs. Manuscript.
[6] J. Phys. Chem. B 2005 9839 9842
, , , , ,[7] J. Assoc. Comput. Mach. 1988 523 534
, ,[8] American Journal of Undergraduate Research 2011 15 32
, , ,[9] Nature 2008 198 202
, , , , , ,[10] J. Am. Chem. Soc. 2009 9154 9155
, ,[11] N. Jonoska, G. McColm, A. Staninska. Spectrum of a pot for DNA complexes. In DNA, 2006, 83–94.
[12] Theoretical Computer Science 2009 1448 1460
, ,[13] Nano Today 2007 26 35
,[14] B. Landfraf. Drawing Graphs Methods and Models. Springer-Verlag, 2001, ch. 3D Graph Drawing, 172–192.
[15] Materials Today 2003 38 43
[16] Nature 2006 297 302
[17] Scientific American 2004 64 75
[18] Mol. Biotechnol. 2007 246 257
[19] Nature 2004 618 621
, ,[20] A. Staninska. The graph of a pot with DNA molecules. in Proceedings of the 3rd annual conference on Foundations of Nanoscience (FNANO’06), April 2006, 222–226.
[21] J. Algorithms 1989 568 576
[22] D. West. Introduction to Graph Theory. Prentice-Hall, Englewood Cliffs, NJ, 2000.
[23] Science 2003 1882 1884
, , , ,[24] J. Am. Chem. Soc. 1994 1661 1669
,[25] Nature 2009 74 77
, , , , , , , ,Cité par Sources :