Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2011_6_6_a0, author = {J. R. Jungck}, title = {Mathematical {Biology} {Education:} {Modeling} {Makes} {Meaning}}, journal = {Mathematical modelling of natural phenomena}, pages = {1--21}, publisher = {mathdoc}, volume = {6}, number = {6}, year = {2011}, doi = {10.1051/mmnp/20116601}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116601/} }
TY - JOUR AU - J. R. Jungck TI - Mathematical Biology Education: Modeling Makes Meaning JO - Mathematical modelling of natural phenomena PY - 2011 SP - 1 EP - 21 VL - 6 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116601/ DO - 10.1051/mmnp/20116601 LA - en ID - MMNP_2011_6_6_a0 ER -
J. R. Jungck. Mathematical Biology Education: Modeling Makes Meaning. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 1-21. doi : 10.1051/mmnp/20116601. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116601/
[1] PLOS Biology 2004 439
[2] J. Jungck, P. Marsteller, editors. Bio 2010: Mutualism of biology and mathematics. A special issue of CBE Life Science Education, 9, (2010) No. 3. Available from: (http://www.lifescied.org/content/vol9/issue3/index.dtl).
[3] Bioscene 1997 11 36
[4] Board on Life Sciences. National Research Council. BIO2010: Transforming undergraduate education for future research Bbologists. National Academies Press: Washington, D.C., 2003.
[5] Math. Model. Nat. Phenom. 2011 198 214
[6] Math. Model. Nat. Phenom. 2011 215 226
, ,[7] Math. Model. Nat. Phenom. 2011 76 95
,[8] Math. Model. Nat. Phenom. 2011 227 244
[9] AAAS Vision and Change in Undergraduate biology education: A call To action. American Association for the Advancement of Science, Washington, D.C., 2011.
[10] National Research Council. A New Biology for the 21st Century: Ensuring that the United States Leads the Coming Biology Revolution. National Academies Press, Washington, D.C., 2009.
[11] S. Emmott, S. Rison, Editors. Towards 2020 science. Microsoft Corporation, Cambridge, 2006, http://research.microsoft.com/en-us/um/cambridge/projects/towards2020science/\downloads/t2020s_report.pdf
[12] L. Steen, Editor. Math and Bio 2010: Linking Undergraduate Disciplines. Mathematics Association of America, Washington, D.C., 2005.
[13] T. Hey, St. Tansley, K. Tolle, Editors. The fourth paradigm: Data-intensive scientific discovery. Microsoft: Redmond, Washington, 2009. (http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf).
[14] Scientific Foundations for Future Physicians: Report of the AAMC-HHMI Committee. Association of American Medical Colleges, Washington, D.C., 2009. (http://www.hhmi.org/grants/pdf/08–209_AAMC-HHMI_report.pdf).
[15] J. Woodger. Biological principles : a critical study. Harcourt, Brace, London, 1929.
[16] C. Anderson. The end of theory: The data deluge makes the scientific method obsolete. Wired, 16 (2008) 7.
[17] EMBO Reports 2009 534
[18] Sci Transl Med. 2010 34
[19] Computational Statistics 2011 343 356
,[20] American Scientist 1966 421 431
[21] A. Clark, E. Wiebe. Scientific visualization for secondary and post-secondary schools. Journal of Technology Studies, 26 (2000), No. 1.
[22] Teaching statistics 2006 8 9
[23] C. Konold, T. Higgins. Reasoning about data. In J. Kilpatrick, W. Martin, D. Schifter (Eds.), A research companion to principles and standards for school mathematics, Reston, VA, National Council of Teachers of Mathematics, (2003), 193–215.
[24] Science 2011 1213 1216
, , , ,[25] S. Ziliak, D. McCloskey. The cult of statistical significance. The University of Michigan Press, Ann Arbor, 2008.
[26] Fuzzy Sets and Systems 1978 3 28
[27] Journal of ACM 2001 648 685
,[28] AAAI 2008 523 528
[29] Journal of Research in Science Teaching 2009 632 654
, , , , , , , ,[30] School Science and Mathematics 1987 363 370
[31] Biology and Philosophy 2006 607 621
[32] G. Box. Robustness in the strategy of scientific model building. (May 1979) in R. Launer, G. Wilkinson, Editors, Robustness in Statistics: Proceedings of a Workshop, 1979.
[33]
[34] Materials Science Technology 2008 128 136
[35] Biology International 2010 78 90
[36] J. Jungck. Genetic codes as codes: Towards a theoretical basis for Bioinformatics. In R. Mondaini (Universidade Federal do Rio de Janeiro, Brazil), Editor. BIOMAT 2008. World Scientific, Singapore, (2009), 300–331.
[37] A. Caldeira. Mathematical modeling and environmental education. Proceedings of the 11th International Congress on Mathematics Education, Monterrey, Mexico, July 6 - 13, 2008, (20009), (http://tsg.icme11.org/document/get/493).
[38] L. Steen. Data, shapes, symbols: Achieving balance in school mathematics. In B. Madison, L. Steen, Editors, Quantitative literacy: Why numeracy matters for schools and colleges. Mathematics Association of America, Washington, DC., (2003), 53–74.
[39] G. Wiggins. Get real! assessing for quantitative literacy. In B. Madison, L. Steen, Editors, Quantitative literacy: Why numeracy matters for schools and colleges. Princeton, NJ, National Council on Education and the Disciplines, (2003), 121–143.
[40] R. Richardson, W. Mccallum. The third R in literacy. In B. Madison, L. Steen, Editors, Quantitative literacy: Why numeracy matters for schools and colleges. Mathematics Association of America, Washington, DC., (2003), 99–106.
[41] Theory Into Practice 2002 212 218
[42] H. Freudenthal. Weeding and sowing: Preface to a science of mathematics education. Dordrecht, Netherlands, 1980.
[43] J. Curriculum Studies 2000 777 796
,[44] R. Khattar, C. Wien. Review of complexity and education: Inquiries into learning, teaching, and research by B. Davis, D. Sumara, 2006. New York and London: Lawrence Erlbaum Associates. Complicity, 7 (2010), No. 2, 122–125.
[45] M. Andresen. Teaching to reinforce the bonds between modelling and reflecting. In M. Blomhoj, S. Carreira, Editors, Mathematical applications and modelling in the teaching and learning of mathematics. Proceedings from Topic Study Group 21 at the 11th International Congress on Mathematical Education in Monterrey, Mexico, July 6-13, 2008, (2009), 73–83. (Available at http://diggy.ruc.dk:8080/retrieve/14388#page=77).
[46] International Electronic Journal of Mathematics Education 2007 1 15
[47] ZDM 2010 91 104
,[48] ZDM 2009
,[49] Educational Studies in Mathematics 1999 111 129
,[50] K. Gravemeijer, M. Stephan. Emergent models as an instructional design heuristic. In Gravemeijer et al., (2002), 145–169.
[51] K. Gravemeijer, R. Lehrer, L. Verschaffel, B. Van Oers (Eds.). Symbolizing, modeling, and tool use in mathematics education. Dordrecht, Netherlands, Kluwer, 2002.
[52] Math. Model. Nat. Phenom. 2011 278 294
[53] Math. Model. Nat. Phenom. 2011 96 107
,[54] Math. Model. Nat. Phenom. 2011 108 135
,[55] Math. Model. Nat. Phenom. 2011 136 158
[56] Math. Model. Nat. Phenom. 2011 39 60
, ,[57] Math. Model. Nat. Phenom. 2011 159 197
, , , ,[58] Math. Model. Nat. Phenom. 2011 260 277
, , ,[59] Math. Model. Nat. Phenom. 2011 22 38
[60] Math. Model. Nat. Phenom. 2011 61 75
[61] Math. Model. Nat. Phenom. 2011 245 259
[62] Math. Model. Nat. Phenom. 2011 295 313
, , , , , ,Cité par Sources :