Mathematical Biology Education: Modeling Makes Meaning
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 1-21.

Voir la notice de l'article provenant de la source EDP Sciences

This special issue of Mathematical Modelling of Natural Phenomena on biomathematics education shares the work of fifteen groups at as many different institutions that have developed beautiful biological applications of mathematics that are different in three ways from much of what is currently available. First, many of these selections utilize current research in biomathematics rather than the well-known textbook examples that are at least a half-century old. Second, the selections focus on modules that are intended for instant classroom adoption, adaptation, and implementation. Instead of focusing on how to overcome the challenges of implementing mathematics into biology or biology into mathematics or on educational research on the effectiveness of some small implementation, the authors develop individual biological models sufficiently well such that they can be easily adopted and adapted for use in both mathematics and biology classrooms. A third difference in this collection is the substantive inclusion of discrete mathematics and innovative pedagogies. Because calculus-based models have received the majority of the biomathematics modeling attention until very recently, the focus on discrete models may seem surprising. The examples range from DNA nanostructures through viral capsids to neuronal processes and ecosystem problems. Furthermore, a taxonomy of quantitative reasoning and the role of modeling per se as a different practice are contextualized in contemporary biomathematics education.
DOI : 10.1051/mmnp/20116601

J. R. Jungck 1

1 Department of Biology, Beloit College, Beloit, WI 53511, USA
@article{MMNP_2011_6_6_a0,
     author = {J. R. Jungck},
     title = {Mathematical {Biology} {Education:} {Modeling} {Makes} {Meaning}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {6},
     number = {6},
     year = {2011},
     doi = {10.1051/mmnp/20116601},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116601/}
}
TY  - JOUR
AU  - J. R. Jungck
TI  - Mathematical Biology Education: Modeling Makes Meaning
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 1
EP  - 21
VL  - 6
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116601/
DO  - 10.1051/mmnp/20116601
LA  - en
ID  - MMNP_2011_6_6_a0
ER  - 
%0 Journal Article
%A J. R. Jungck
%T Mathematical Biology Education: Modeling Makes Meaning
%J Mathematical modelling of natural phenomena
%D 2011
%P 1-21
%V 6
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116601/
%R 10.1051/mmnp/20116601
%G en
%F MMNP_2011_6_6_a0
J. R. Jungck. Mathematical Biology Education: Modeling Makes Meaning. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 6, pp. 1-21. doi : 10.1051/mmnp/20116601. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116601/

[1] J. Cohen PLOS Biology 2004 439

[2] J. Jungck, P. Marsteller, editors. Bio 2010: Mutualism of biology and mathematics. A special issue of CBE Life Science Education, 9, (2010) No. 3. Available from: (http://www.lifescied.org/content/vol9/issue3/index.dtl).

[3] J. Jungck Bioscene 1997 11 36

[4] Board on Life Sciences. National Research Council. BIO2010: Transforming undergraduate education for future research Bbologists. National Academies Press: Washington, D.C., 2003.

[5] A. Weisstein Math. Model. Nat. Phenom. 2011 198 214

[6] H. Gaff, M. Lyons, G. Watson Math. Model. Nat. Phenom. 2011 215 226

[7] C. Neuhauser, E. Stanley Math. Model. Nat. Phenom. 2011 76 95

[8] G. Koch Math. Model. Nat. Phenom. 2011 227 244

[9] AAAS Vision and Change in Undergraduate biology education: A call To action. American Association for the Advancement of Science, Washington, D.C., 2011.

[10] National Research Council. A New Biology for the 21st Century: Ensuring that the United States Leads the Coming Biology Revolution. National Academies Press, Washington, D.C., 2009.

[11] S. Emmott, S. Rison, Editors. Towards 2020 science. Microsoft Corporation, Cambridge, 2006, http://research.microsoft.com/en-us/um/cambridge/projects/towards2020science/\downloads/t2020s_report.pdf

[12] L. Steen, Editor. Math and Bio 2010: Linking Undergraduate Disciplines. Mathematics Association of America, Washington, D.C., 2005.

[13] T. Hey, St. Tansley, K. Tolle, Editors. The fourth paradigm: Data-intensive scientific discovery. Microsoft: Redmond, Washington, 2009. (http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf).

[14] Scientific Foundations for Future Physicians: Report of the AAMC-HHMI Committee. Association of American Medical Colleges, Washington, D.C., 2009. (http://www.hhmi.org/grants/pdf/08–209_AAMC-HHMI_report.pdf).

[15] J. Woodger. Biological principles : a critical study. Harcourt, Brace, London, 1929.

[16] C. Anderson. The end of theory: The data deluge makes the scientific method obsolete. Wired, 16 (2008) 7.

[17] M. Pigliucci EMBO Reports 2009 534

[18] G. An Sci Transl Med. 2010 34

[19] G. An, S. Christley Computational Statistics 2011 343 356

[20] R. Levins American Scientist 1966 421 431

[21] A. Clark, E. Wiebe. Scientific visualization for secondary and post-secondary schools. Journal of Technology Studies, 26 (2000), No. 1.

[22] H. Goldstein Teaching statistics 2006 8 9

[23] C. Konold, T. Higgins. Reasoning about data. In J. Kilpatrick, W. Martin, D. Schifter (Eds.), A research companion to principles and standards for school mathematics, Reston, VA, National Council of Teachers of Mathematics, (2003), 193–215.

[24] D. Haak, J. Hille, R. Lambers, E. Pitre, S. Freeman Science 2011 1213 1216

[25] S. Ziliak, D. McCloskey. The cult of statistical significance. The University of Michigan Press, Ann Arbor, 2008.

[26] L. Zadeh Fuzzy Sets and Systems 1978 3 28

[27] N. Friedman, J. Halpern Journal of ACM 2001 648 685

[28] G. Qi AAAI 2008 523 528

[29] C. Schwarz, B. Reiser, E. Davis, L. Kenyon, A. Acher, D. Fortus, Y. Shwartz, B. Hug, J. Krajcik Journal of Research in Science Teaching 2009 632 654

[30] D. Ost School Science and Mathematics 1987 363 370

[31] J. Odenbaugh Biology and Philosophy 2006 607 621

[32] G. Box. Robustness in the strategy of scientific model building. (May 1979) in R. Launer, G. Wilkinson, Editors, Robustness in Statistics: Proceedings of a Workshop, 1979.

[33]

[34] H. Bhadeshia Materials Science Technology 2008 128 136

[35] J. Cartier Biology International 2010 78 90

[36] J. Jungck. Genetic codes as codes: Towards a theoretical basis for Bioinformatics. In R. Mondaini (Universidade Federal do Rio de Janeiro, Brazil), Editor. BIOMAT 2008. World Scientific, Singapore, (2009), 300–331.

[37] A. Caldeira. Mathematical modeling and environmental education. Proceedings of the 11th International Congress on Mathematics Education, Monterrey, Mexico, July 6 - 13, 2008, (20009), (http://tsg.icme11.org/document/get/493).

[38] L. Steen. Data, shapes, symbols: Achieving balance in school mathematics. In B. Madison, L. Steen, Editors, Quantitative literacy: Why numeracy matters for schools and colleges. Mathematics Association of America, Washington, DC., (2003), 53–74.

[39] G. Wiggins. Get real! assessing for quantitative literacy. In B. Madison, L. Steen, Editors, Quantitative literacy: Why numeracy matters for schools and colleges. Princeton, NJ, National Council on Education and the Disciplines, (2003), 121–143.

[40] R. Richardson, W. Mccallum. The third R in literacy. In B. Madison, L. Steen, Editors, Quantitative literacy: Why numeracy matters for schools and colleges. Mathematics Association of America, Washington, DC., (2003), 99–106.

[41] D. Krathwohl Theory Into Practice 2002 212 218

[42] H. Freudenthal. Weeding and sowing: Preface to a science of mathematics education. Dordrecht, Netherlands, 1980.

[43] K. Gravemeijer, J. Terwel J. Curriculum Studies 2000 777 796

[44] R. Khattar, C. Wien. Review of complexity and education: Inquiries into learning, teaching, and research by B. Davis, D. Sumara, 2006. New York and London: Lawrence Erlbaum Associates. Complicity, 7 (2010), No. 2, 122–125.

[45] M. Andresen. Teaching to reinforce the bonds between modelling and reflecting. In M. Blomhoj, S. Carreira, Editors, Mathematical applications and modelling in the teaching and learning of mathematics. Proceedings from Topic Study Group 21 at the 11th International Congress on Mathematical Education in Monterrey, Mexico, July 6-13, 2008, (2009), 73–83. (Available at http://diggy.ruc.dk:8080/retrieve/14388#page=77).

[46] M. Andresen International Electronic Journal of Mathematics Education 2007 1 15

[47] G. Gadanidis, V. Geiger ZDM 2010 91 104

[48] L. Doorman, K. Gravemeijer ZDM 2009

[49] K. Gravemeijer, M. Doorman Educational Studies in Mathematics 1999 111 129

[50] K. Gravemeijer, M. Stephan. Emergent models as an instructional design heuristic. In Gravemeijer et al., (2002), 145–169.

[51] K. Gravemeijer, R. Lehrer, L. Verschaffel, B. Van Oers (Eds.). Symbolizing, modeling, and tool use in mathematics education. Dordrecht, Netherlands, Kluwer, 2002.

[52] D. Kondrashov Math. Model. Nat. Phenom. 2011 278 294

[53] J. Ellis-Monaghan, G. Pangborn Math. Model. Nat. Phenom. 2011 96 107

[54] S. Robic, J. Jungck Math. Model. Nat. Phenom. 2011 108 135

[55] R. Kerner Math. Model. Nat. Phenom. 2011 136 158

[56] R. Robeva, B. Kirkwood, R. Davies Math. Model. Nat. Phenom. 2011 39 60

[57] J. Gill, K. Shaw, B. Rountree, Ca. Kehl, H. Chiel Math. Model. Nat. Phenom. 2011 159 197

[58] J. Milton, A. Radunskaya, W. Ou, T. Ohira Math. Model. Nat. Phenom. 2011 260 277

[59] M. Cozzens Math. Model. Nat. Phenom. 2011 22 38

[60] G. Hartvigsen Math. Model. Nat. Phenom. 2011 61 75

[61] J. Knisley Math. Model. Nat. Phenom. 2011 245 259

[62] Y. Grossman, A. Berdanier, M. Custic, L. Feeley, S. Peake, A. Saenz, K. Sitton Math. Model. Nat. Phenom. 2011 295 313

Cité par Sources :