Quasichemical Models of Multicomponent Nonlinear Diffusion
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 184-262.

Voir la notice de l'article provenant de la source EDP Sciences

Diffusion preserves the positivity of concentrations, therefore, multicomponent diffusion should be nonlinear if there exist non-diagonal terms. The vast variety of nonlinear multicomponent diffusion equations should be ordered and special tools are needed to provide the systematic construction of the nonlinear diffusion equations for multicomponent mixtures with significant interaction between components. We develop an approach to nonlinear multicomponent diffusion based on the idea of the reaction mechanism borrowed from chemical kinetics.Chemical kinetics gave rise to very seminal tools for the modeling of processes. This is the stoichiometric algebra supplemented by the simple kinetic law. The results of this invention are now applied in many areas of science, from particle physics to sociology. In our work we extend the area of applications onto nonlinear multicomponent diffusion.We demonstrate, how the mechanism based approach to multicomponent diffusion can be included into the general thermodynamic framework, and prove the corresponding dissipation inequalities. To satisfy thermodynamic restrictions, the kinetic law of an elementary process cannot have an arbitrary form. For the general kinetic law (the generalized Mass Action Law), additional conditions are proved. The cell–jump formalism gives an intuitively clear representation of the elementary transport processes and, at the same time, produces kinetic finite elements, a tool for numerical simulation.
DOI : 10.1051/mmnp/20116509

A.N. Gorban 1 ; H.P. Sargsyan 2 ; H.A. Wahab 1

1 Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
2 UNESCO Chair – Life Sciences International Postgraduate Educational Center (LSIPEC), Yerevan, Republic of Armenia
@article{MMNP_2011_6_5_a8,
     author = {A.N. Gorban and H.P. Sargsyan and H.A. Wahab},
     title = {Quasichemical {Models} of {Multicomponent} {Nonlinear} {Diffusion}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {184--262},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {2011},
     doi = {10.1051/mmnp/20116509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116509/}
}
TY  - JOUR
AU  - A.N. Gorban
AU  - H.P. Sargsyan
AU  - H.A. Wahab
TI  - Quasichemical Models of Multicomponent Nonlinear Diffusion
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 184
EP  - 262
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116509/
DO  - 10.1051/mmnp/20116509
LA  - en
ID  - MMNP_2011_6_5_a8
ER  - 
%0 Journal Article
%A A.N. Gorban
%A H.P. Sargsyan
%A H.A. Wahab
%T Quasichemical Models of Multicomponent Nonlinear Diffusion
%J Mathematical modelling of natural phenomena
%D 2011
%P 184-262
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116509/
%R 10.1051/mmnp/20116509
%G en
%F MMNP_2011_6_5_a8
A.N. Gorban; H.P. Sargsyan; H.A. Wahab. Quasichemical Models of Multicomponent Nonlinear Diffusion. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 184-262. doi : 10.1051/mmnp/20116509. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116509/

[1] G.I. Barenblatt Prikl. Mat. Mekh. 1952 67 78

[2] G.I. Barenblatt, Y.B. Zelšdovich Ann. Rev. Fluid Mech. 1972 285 312

[3] L. Bertini, C. Landim, S. Olla J. Stat. Phys. 1997 365 381

[4] T. Blesgen, U. Weikard Electron. J. Diff. Eqns. 2005 1 17

[5] M. Boudart Catal. Lett. 2000 1 3

[6] L. Boltzmann. Lectures on gas theory. U. of California Press, Berkeley, CA, 1964.

[7] G.E. Briggs, J.B.S. Haldane Biochem. J. 1925 338 339

[8] R.A. Brownlee, A.N. Gorban, J. Levesley Physica A 2008 385 406

[9] V.I. Bykov, S.E. Gilev, A.N. Gorban, G.S. Yablonskii Dokl. Akad. Nauk SSSR 1985 1217 1220

[10] V.I. Bykov, A.N. Gorban, G.S. Yablonskii React. Kinet. Catal. Lett. 1982 261 265

[11] J.W. Cahn J. Chem. Phys. 1959 1121 1124

[12] J.W. Cahn, J.E. Hilliard J. Chem. Phys. 1958 258 266

[13] J.W. Cahn, J.E. Hilliard Acta Metallurgica 1971 151 161

[14] H.B. Callen. Thermodynamics and an introduction to themostatistics (2nd ed.). John Wiley Sons, NY, 1985.

[15] C. Cercignani, M. Lampis J. Stat. Phys. 1981 795 801

[16] B. Chopard, M. Droz. Cellular automata modeling of physical systems. Cambridge University Press, Cambridge, UK, 1998.

[17] R. Clausius Poggendorffs Annalen der Physic und Chemie 1865 353 400

[18] A.J. Chorin, O.H. Hald, R. Kupferman Physica D 2002 239 257

[19] F. Coester. Principle of detailed balance. Phys. Rev., 84, 1259 (1951)

[20] S.R. De Groot, P. Mazur. Non-equilibrium Thermodynamics. North-Holland, Amsterdam, 1962.

[21] K. Denbigh. The principles of chemical equilibrium. Cambridge University Press, Cambridge, UK, 1981.

[22] S. Dushman, I. Langmuir Phys. Rev. 1922 113

[23] P. Ehrenfest, T. Ehrenfest-Afanasyeva. Begriffliche Grundlagen der statistischen Auffassung in der Mechanik. In: Mechanics Enziklopädie der Mathematischen Wissenschaften, Vol. 4. Leipzig, 1911. (Reprinted in: Ehrenfest, P., Collected Scientific Papers. North–Holland, Amsterdam, 1959, pp. 213–300.)

[24] A. Einstein Ann. Phys. 1905 549 560

[25] A. Einstein. Strahlungs-Emission und -Absorption nach der Quantentheorie. Verhandlungen der Deutschen Physikalischen Gesellschaft, 18 (1916), No. 13/14, Braunschweig, Vieweg, 318–323.

[26] C.M. Elliott, Z. Songmu Arch. Rat. Mechan. Anal. 1986 339 357

[27] C.M. Elliott, A.M. Stuart SIAM J. Numer. Anal. 1993 1622 1663

[28] H. Eyring J. Chem. Phys. 1935 107 115

[29] M. Feinberg Arch. Rat. Mechan. Anal. 1972 1 41

[30] M. Feinberg Arch. Rat. Mechan. Anal. 1972 187 194

[31] R.F. Feynman Internat. J. Theor. Phys. 1982 467 488

[32] A. Fick Poggendorff’s Annalen der Physik und Chemie 1855 59 86

[33] R.A. Fisher. The genetical theory of natural selection. Oxford University Press, Oxford, 1930.

[34] F.C. Frank, D. Turnbull Phys. Rev. 1956 617 618

[35] A. Fratzl, O. Penrose, J.L. Lebowitz J. Stat. Phys. 1999 1429 1503

[36] J. Frenkel Zeitschrift für Physik 1924 117 138

[37] J. Frenkel Zeitschrift für Physik 1925 652 669

[38] G.F. Gause. The struggle for existence. Williams Wilkins, Baltimore, 1934.

[39]

[40] D.T. Gillespie J. Phys. Chem. 1977 2340 2361

[41] D.T. Gillespie Annu. Rev. Phys. Chem. 2007 35 55

[42] A.N. Gorban. Equilibrium encircling. Equations of chemical kinetics and their thermodynamic analysis. Nauka, Novosibirsk, 1984.

[43] A.N. Gorban. Singularities of transition processes in dynamical systems: qualitative theory of critical delays. Electron. J. Diff. Eqns., Monograph 05, 2004. E-print: http://arxiv.org/abs/chao-dyn/9703010, 1997.

[44] A.N. Gorban. Basic types of coarse-graining. In: Model reduction and coarse–graining approaches for multiscale phenomena, Ed. by A.N. Gorban, N. Kazantzis, I.G. Kevrekidis, H.C. Öttinger, C. Theodoropoulos. Springer, Berlin-Heidelberg-New York, 2006, 117–176. E-print: http://arxiv.org/abs/cond-mat/0602024, 2006.

[45] A.N. Gorban, V.I. Bykov, G.S. Yablonskii Chem. Eng. Sci. 1980 2351 2352

[46] A.N. Gorban, V.I. Bykov, G.S. Yablonskii. Essays on chemical relaxation. Novosibirsk, Nauka Publ., 1986.

[47] A.N. Gorban, P.A. Gorban, G. Judge Entropy 2010 1145 1193

[48] A.N. Gorban, I.V. Karlin, H.C. Öttinger, L.L. Tatarinova Phys. Rev. E 2001 066124

[49] A.N. Gorban, I.V. Karlin Physica A 2004 391 432

[50] A.N. Gorban, I.V. Karlin Chem. Eng. Sci. 2003 4751 4768

[51] A.N. Gorban, I.V. Karlin. Invariant manifolds for physical and chemical kinetics. Lect. Notes Phys. 660, Springer, Berlin, Heidelberg, 2005.

[52] A.N. Gorban, I.V. Karlin, P. Ilg, H.C. Öttinger J. Non-Newtonian Fluid Mech. 2001 203 219

[53] A.N. Gorban, H.P. Sargsyan Kinetics and Catalysis 1986 527

[54] A.N. Gorban, M. Shahzad. QE+QSS for derivation of kinetic equations and stiffness removing. E-print: http://arxiv.org/abs/1008.3296, 2010.

[55] T. Graham Phil. Trans. R. Soc. Lond. 1850 1 46

[56] M. Grmela, H.C. Öttinger Phys. Rev. E 1997 6620 6632

[57] W.S.C. Gurney, R.M. Nisbet J. Theor. Biol. 1976 249 251

[58] M.E. Gurtin Physica D 1996 178 192

[59] I. Gyarmati. Non-equilibrium thermodynamics. Field theory and variational principles. Springer, Berlin, 1970.

[60] W. Heitler. Quantum Theory of Radiation. Oxford University Press, London, 1944.

[61] R. Hengeveld. Dynamics of biological invasions. Chapman and Hall, London, 1989.

[62] F. Horn, R. Jackson Arch. Rat. Mechan. Anal. 1972 81 116

[63] W.G. Hoover. Computational statistical mechanics. Elsevier, Amsterdam, 1991.

[64] I.V. Karlin, A.N. Gorban, S. Succi, V. Boffi Phys. Rev. Lett. 1998 6 9

[65] L.B. Kier, P.G. Seybold, Ch-K. Cheng. Modeling chemical systems using cellular automata. Dordrecht, The Netherlands, 2005.

[66] J.F. Kincaid, H. Eyring, A.E. Stearn Chem. Rev. 1941 301 365

[67] E.O. Kirkendall Trans. Am. Inst. Min. Metall. Eng. 1942 104 110

[68] A.B. Kudryavtsev, R.F. Jameson, W. Linert. The law of mass action. Springer, Berlin – Heidelberg – New York, 2001.

[69] K.J. Laidler, A. Tweedale. The current status of Eyring’s rate theory. In: Advances in Chemical Physics: Chemical dynamics: Papers in honor of Henry Eyring, Volume 21 (eds J. O. Hirschfelder and D. Henderson). John Wiley Sons, Inc., Hoboken, NJ, USA, 2007.

[70] L.D. Landau, E.M. Lifshitz. Fluid mechanics: Volume 6 (Course of theoretical physics). Butterworth-Heinemann, Oxford–Woburn, 1987.

[71] J.S. Langer, M. Bar-On, H.D. Miller Phys. Rev. A 1975 1417 1429

[72] G. Lebon, D. Jou, J. Casas-Vázquez. Understanding non-equilibrium thermodynamics: Foundations, applications, Frontiers. Springer, Berlin, 2008.

[73] A.J. Lotka. Elements of physical biology. Williams and Wilkins, Baltimore, 1925.

[74] R.J.P. Lyon Mining Eng. 1959 1145 1151

[75] B.H. Mahan J. Chem. Educ. 1975 299 302

[76] S. Maier-Paape, B. Stoth, T. Wanner J. Stat. Phys. 2000 871 896

[77] E. Mclaughlin Chem. Rev. 1964 389 428

[78] H. Mehrer. Diffusion in solids – fundamentals, methods, materials, diffusion-controlled processes. Textbook, Springer Series in Solid-State Sciences, Vol. 155, Springer, Berlin – Heidelberg – New York, 2007.

[79] H. Mehrer, N.A. Stolwijk Diffusion Fundamentals 2009 1 32

[80] L. Michaelis, M. Menten Biochemistry Zeitung 1913 333 369

[81] H. Nakajima JOM 1997 15 19

[82] T.N. Narasimhan Current Science 2007 1257 1264

[83] L. Onsager Phys. Rev. 1931 405 426

[84] L. Onsager Phys. Rev. 1931 2265 2279

[85] H.C. Öttinger. Beyond equilibrium thermodynamics. Wiley-Blackwell, Hoboken, NJ, 2005.

[86] H.C. Öttinger J. Chem. Phys. 2009 114904

[87] H.C. Öttinger, M. Grmela Phys. Rev. E 1997 6633 6655

[88] K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama. Surface science: An introduction. Springer, Berlin – Heidelberg, 2003.

[89] S.V. Petrovskii, B.-L. Li. Exactly solvable models of biological invasion. Chapman Hall / CRC Press, Boca–Raton–London–New York–Washington D.C., 2006.

[90] J. Philibert Diffusion Fundamentals 2005 1

[91]

[92] D. Rothman, S. Zaleski Rev. Mod. Phys. 1994 1417 1480

[93] P.K. Schelling, S.R. Phillpot, P. Keblinski Phys. Rev. B 2002 144306

[94] N.N. Semenov. Some problems relating to chain reactions and to the theory of combustion. Nobel Lecture, December 11, 1956. In: Nobel lectures in chemistry 1942–1962. World Scientific, Hackensack, NJ, 1999.

[95] E. Seneta. Nonnegative matrices and Markov chains. Springer, New York, 1981.

[96] N. Shigesada, K. Kawasaki. Biological invasions: theory and practice. Oxford University Press, Oxford, 1997.

[97] E.C.G. Stueckelberg Helv. Phys. Acta 1952 577 580

[98] S. Succi. The lattice Boltzmann equation for fluid dynamics and beyond. Clarendon Press, Oxford, UK, 2001.

[99] S. Succi, I. Karlin, H. Chen Rev. Mod. Phys. 2002 1203 1220

[100] S. Succi, “Lattice Boltzmann at all-scales: from turbulence to DNA translocation”, Mathematical Modelling Centre Distinguished Lecture, University of Leicester, Leicester, UK, 15 November 2006.

[101] T. Teorell Proc. N. A. S. USA 1935 152 161

[102] T. Teorell The Journal of General Physiology 1937 107 122

[103] T. Toffoli, N. Margolus. Cellular automata machines: A new environment for modeling. MIT Press, Cambridge, MA, 1987.

[104] C. Tuijn Defect and Diffusion Forum 1997 11 20

[105] N.G. Van Kampen Physica 1973 1 22

[106] P. Van Mieghem. Performance analysis of communications networks and systems. Cambridge University Press, Cambridge, 2006.

[107] J.H. Van’t Hoff. Etudes de dynamique chimique. Frederic Muller, Amsterdam, 1884.

[108] J.L. Vázquez. The porous medium equation. Mathematical Theory. Oxford University Press, Oxford, 2007.

[109] A.I. Volpert, S.I. Khudyaev. Analysis in classes of discontinuous functions and equations of mathematical physics. Nijoff, Dordrecht, 1985.

[110] V. Volterra Mem. R. Accad. Naz. dei Lincei 1926 31 113

[111] J. Von Neumann, A.W. Burks. Theory of self-reproducing automata. University of Illinois Press, Urbana, 1966.

[112] S. Watanabe Rev. Mod. Phys. 1955 26 39

[113] R. Wegscheider Monatshefte für Chemie / Chemical Monthly 1911 849 906

[114] D.A. Wolf-Gladrow. Lattice-gas cellular automata and lattice Boltzmann models. Springer, 2000.

[115] S. Wolfram. A new kind of science. Wolfram Media, Champaign, IL, 2002.

[116] W.F.K. Wynne-Jones, H. Eyring J. Chem. Phys. 1935 492 502

[117] G.S. Yablonskii, V.I. Bykov, A.N. Gorban, V.I. Elokhin. Kinetic models of catalytic reactions. Series “Comprehensive Chemical Kinetics", Vol. 32, Compton R.G. (ed.), Elsevier, Amsterdam, 1991.

[118]

Cité par Sources :