A Dual Mixed Formulation for Non-isothermal Oldroyd–Stokes Problem
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 130-156.

Voir la notice de l'article provenant de la source EDP Sciences

We propose a mixed formulation for non-isothermal Oldroyd–Stokes problem where the both extra stress and the heat flux’s vector are considered. Based on such a formulation, a dual mixed finite element is constructed and analyzed. This finite element method enables us to obtain precise approximations of the dual variable which are, for the non-isothermal fluid flow problems, the viscous and polymeric components of the extra-stress tensor, as well as the heat flux. Furthermore, it has properties analogous to the finite volume methods, namely, the local conservation of the momentum and the mass.
DOI : 10.1051/mmnp/20116507

M. Farhloul 1 ; A. Zine 2

1 Département de Mathématiques et de Statistique, Université de Moncton Moncton, N.B., E1A 3E9, Canada
2 Université de Lyon, Ecole Centrale de Lyon, CNRS UMR 5208 Institut Camille Jordan 36, rue Guy de Collongue, 69134 Ecully, France
@article{MMNP_2011_6_5_a6,
     author = {M. Farhloul and A. Zine},
     title = {A {Dual} {Mixed} {Formulation} for {Non-isothermal} {Oldroyd{\textendash}Stokes} {Problem}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {130--156},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {2011},
     doi = {10.1051/mmnp/20116507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116507/}
}
TY  - JOUR
AU  - M. Farhloul
AU  - A. Zine
TI  - A Dual Mixed Formulation for Non-isothermal Oldroyd–Stokes Problem
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 130
EP  - 156
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116507/
DO  - 10.1051/mmnp/20116507
LA  - en
ID  - MMNP_2011_6_5_a6
ER  - 
%0 Journal Article
%A M. Farhloul
%A A. Zine
%T A Dual Mixed Formulation for Non-isothermal Oldroyd–Stokes Problem
%J Mathematical modelling of natural phenomena
%D 2011
%P 130-156
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116507/
%R 10.1051/mmnp/20116507
%G en
%F MMNP_2011_6_5_a6
M. Farhloul; A. Zine. A Dual Mixed Formulation for Non-isothermal Oldroyd–Stokes Problem. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 130-156. doi : 10.1051/mmnp/20116507. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116507/

[1] D.N. Arnold, F. Brezzi, J. Douglas Japan J. Appl. Math. 1984 347 367

[2] J. Baranger, D. Sandri M2AN 1992 331 345

[3] F. Brezzi, M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin, 1991.

[4] P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, 1978.

[5] P. Clément RAIRO Anal. Numer. 1975 77 84

[6] C. Cox, H. Lee, D. Szurley Int. J. Numer. Anal. Mod. 2007 425 440

[7] S. Damak Besbes, C. Guillopé Nonlinear Analysis 2001 919 942

[8] J. Douglas, J.E. Roberts Math. Comp. 1985 39 52

[9] L.C. Evans. Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 1999.

[10] M. Farhloul, M. Fortin SIAM J. Numer. Anal. 1993 971 990

[11] M. Farhloul, M. Fortin Numer. Math. 1997 419 440

[12] M. Farhloul, A.M. Zine J. Math. Anal. Appl. 2002 329 342

[13] P. Grisvard EDF Bull. Direction Etudes Rech. Sér. C Math. Inform. 1986 21 59

[14] J.C. Nedelec Numer. Math. 1980 315 341

[15] G.W.M. Peters, F.T.O. Baaijens J. Non-Newtonian Fluid Mech. 1997 205 224

[16] P.A. Raviart, J.M. Thomas. A mixed finite element method for 2nd order elliptic problems, Lecture Notes in Mathematics, Vol. 606, Springer-Verlag, New-York, 1977, pp. 292-315.

[17] J.E. Roberts, J.M. Thomas. Mixed and hybrid finite element methods, Handbook of Numerical Analysis, vol. II, Finite Element Methods (part I), P.G Ciarlet, J.L. Lions (Eds.), North-Holland, 1989.

Cité par Sources :