Voir la notice de l'article provenant de la source EDP Sciences
@article{10_1051_mmnp_20116507,
author = {M. Farhloul and A. Zine},
title = {A {Dual} {Mixed} {Formulation} for {Non-isothermal} {Oldroyd{\textendash}Stokes} {Problem}},
journal = {Mathematical modelling of natural phenomena},
pages = {130--156},
publisher = {mathdoc},
volume = {6},
number = {5},
year = {2011},
doi = {10.1051/mmnp/20116507},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116507/}
}
TY - JOUR AU - M. Farhloul AU - A. Zine TI - A Dual Mixed Formulation for Non-isothermal Oldroyd–Stokes Problem JO - Mathematical modelling of natural phenomena PY - 2011 SP - 130 EP - 156 VL - 6 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116507/ DO - 10.1051/mmnp/20116507 LA - en ID - 10_1051_mmnp_20116507 ER -
%0 Journal Article %A M. Farhloul %A A. Zine %T A Dual Mixed Formulation for Non-isothermal Oldroyd–Stokes Problem %J Mathematical modelling of natural phenomena %D 2011 %P 130-156 %V 6 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116507/ %R 10.1051/mmnp/20116507 %G en %F 10_1051_mmnp_20116507
M. Farhloul; A. Zine. A Dual Mixed Formulation for Non-isothermal Oldroyd–Stokes Problem. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 130-156. doi: 10.1051/mmnp/20116507
[1] , , Japan J. Appl. Math. 1984 347 367
[2] , M2AN 1992 331 345
[3] F. Brezzi, M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin, 1991.
[4] P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, 1978.
[5] RAIRO Anal. Numer. 1975 77 84
[6] , , Int. J. Numer. Anal. Mod. 2007 425 440
[7] , Nonlinear Analysis 2001 919 942
[8] , Math. Comp. 1985 39 52
[9] L.C. Evans. Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 1999.
[10] , SIAM J. Numer. Anal. 1993 971 990
[11] , Numer. Math. 1997 419 440
[12] , J. Math. Anal. Appl. 2002 329 342
[13] EDF Bull. Direction Etudes Rech. Sér. C Math. Inform. 1986 21 59
[14] Numer. Math. 1980 315 341
[15] , J. Non-Newtonian Fluid Mech. 1997 205 224
[16] P.A. Raviart, J.M. Thomas. A mixed finite element method for 2nd order elliptic problems, Lecture Notes in Mathematics, Vol. 606, Springer-Verlag, New-York, 1977, pp. 292-315.
[17] J.E. Roberts, J.M. Thomas. Mixed and hybrid finite element methods, Handbook of Numerical Analysis, vol. II, Finite Element Methods (part I), P.G Ciarlet, J.L. Lions (Eds.), North-Holland, 1989.
Cité par Sources :