Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2011_6_5_a6, author = {M. Farhloul and A. Zine}, title = {A {Dual} {Mixed} {Formulation} for {Non-isothermal} {Oldroyd{\textendash}Stokes} {Problem}}, journal = {Mathematical modelling of natural phenomena}, pages = {130--156}, publisher = {mathdoc}, volume = {6}, number = {5}, year = {2011}, doi = {10.1051/mmnp/20116507}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116507/} }
TY - JOUR AU - M. Farhloul AU - A. Zine TI - A Dual Mixed Formulation for Non-isothermal Oldroyd–Stokes Problem JO - Mathematical modelling of natural phenomena PY - 2011 SP - 130 EP - 156 VL - 6 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116507/ DO - 10.1051/mmnp/20116507 LA - en ID - MMNP_2011_6_5_a6 ER -
%0 Journal Article %A M. Farhloul %A A. Zine %T A Dual Mixed Formulation for Non-isothermal Oldroyd–Stokes Problem %J Mathematical modelling of natural phenomena %D 2011 %P 130-156 %V 6 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116507/ %R 10.1051/mmnp/20116507 %G en %F MMNP_2011_6_5_a6
M. Farhloul; A. Zine. A Dual Mixed Formulation for Non-isothermal Oldroyd–Stokes Problem. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 130-156. doi : 10.1051/mmnp/20116507. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116507/
[1] Japan J. Appl. Math. 1984 347 367
, ,[2] M2AN 1992 331 345
,[3] F. Brezzi, M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin, 1991.
[4] P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, 1978.
[5] RAIRO Anal. Numer. 1975 77 84
[6] Int. J. Numer. Anal. Mod. 2007 425 440
, ,[7] Nonlinear Analysis 2001 919 942
,[8] Math. Comp. 1985 39 52
,[9] L.C. Evans. Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 1999.
[10] SIAM J. Numer. Anal. 1993 971 990
,[11] Numer. Math. 1997 419 440
,[12] J. Math. Anal. Appl. 2002 329 342
,[13] EDF Bull. Direction Etudes Rech. Sér. C Math. Inform. 1986 21 59
[14] Numer. Math. 1980 315 341
[15] J. Non-Newtonian Fluid Mech. 1997 205 224
,[16] P.A. Raviart, J.M. Thomas. A mixed finite element method for 2nd order elliptic problems, Lecture Notes in Mathematics, Vol. 606, Springer-Verlag, New-York, 1977, pp. 292-315.
[17] J.E. Roberts, J.M. Thomas. Mixed and hybrid finite element methods, Handbook of Numerical Analysis, vol. II, Finite Element Methods (part I), P.G Ciarlet, J.L. Lions (Eds.), North-Holland, 1989.
Cité par Sources :