Mathematical Modeling of Atmospheric Flow and Computation of Convex Envelopes
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 44-66.

Voir la notice de l'article provenant de la source EDP Sciences

Atmospheric flow equations govern the time evolution of chemical concentrations in the atmosphere. When considering gas and particle phases, the underlying partial differential equations involve advection and diffusion operators, coagulation effects, and evaporation and condensation phenomena between the aerosol particles and the gas phase. Operator splitting techniques are generally used in global air quality models. When considering organic aerosol particles, the modeling of the thermodynamic equilibrium of each particle leads to the determination of the convex envelope of the energy function. Two strategies are proposed to address the computation of convex envelopes. The first one is based on a primal-dual interior-point method, while the second one relies on a variational formulation, an appropriate augmented Lagrangian, an Uzawa iterative algorithm, and finite element techniques. Numerical experiments are presented for chemical systems of atmospheric interest, in order to compute convex envelopes in various space dimensions.
DOI : 10.1051/mmnp/20116503

A. Caboussat 1

1 Department of Mathematics, University of Houston, Houston, Texas 77204-3008, USA
@article{MMNP_2011_6_5_a2,
     author = {A. Caboussat},
     title = {Mathematical {Modeling} of {Atmospheric} {Flow} and {Computation} of {Convex} {Envelopes}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {44--66},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {2011},
     doi = {10.1051/mmnp/20116503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116503/}
}
TY  - JOUR
AU  - A. Caboussat
TI  - Mathematical Modeling of Atmospheric Flow and Computation of Convex Envelopes
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 44
EP  - 66
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116503/
DO  - 10.1051/mmnp/20116503
LA  - en
ID  - MMNP_2011_6_5_a2
ER  - 
%0 Journal Article
%A A. Caboussat
%T Mathematical Modeling of Atmospheric Flow and Computation of Convex Envelopes
%J Mathematical modelling of natural phenomena
%D 2011
%P 44-66
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116503/
%R 10.1051/mmnp/20116503
%G en
%F MMNP_2011_6_5_a2
A. Caboussat. Mathematical Modeling of Atmospheric Flow and Computation of Convex Envelopes. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 44-66. doi : 10.1051/mmnp/20116503. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116503/

[1] N. R. Amundson, A. Caboussat, J. W. He, C. Landry, J. H. Seinfeld C. R. Acad. Sci. 2007 519 522

[2] N. R. Amundson, A. Caboussat, J. W. He, C. Landry, C. Tong, J. H. Seinfeld Atmos. Chem. Phys. 2007 4675 4698

[3] N. R. Amundson, A. Caboussat, J. W. He, A. V. Martynenko, J. H. Seinfeld, K. Y. Yoo Atmos. Chem. Phys. 2006 975 992

[4] N. R. Amundson, A. Caboussat, J. W. He, J. H. Seinfeld J. Optim. Theory Appl. 2006 375 407

[5] H. Y. Benson, D. F. Shanno Comput. Optim. Appl. 2008 143 189

[6] A. Caboussat Computational Optimization and Applications 2011 717 745

[7] A. Caboussat, R. Glowinski Com. Pure. Appl. Anal 2008 161 178

[8] A. Caboussat, R. Glowinski, V. Pons J. Numer. Math 2009 3 26

[9] A. Caboussat, C. Landry, J. Rappaz J. Optim. Theory Appl. 2010 141 156

[10] G. R. Carmichael, L. K. Peters, T. Kitada Atm. Env. 1986 173

[11] E. J. Dean, R. Glowinski Electronic Transactions in Numerical Analysis 2006 71 96

[12] E. J. Dean, R. Glowinski, G. Guidoboni Journal of Non Newtonian Fluid Mechanics 2007 36 62

[13] A. V. Fiacco, G. P. McCormick. Nonlinear programming : sequential unconstrained minimization techniques, Wiley, New York, 1968.

[14] M. Fortin, R. Glowinski. Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, Studies in Mathematics and Its Applications. Elsevier Science Ltd, 1983.

[15] R. Glowinski. Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, NY, 1984.

[16] R. Glowinski, P. Le Tallec. Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.

[17] J. Gondzio, A. Grothey SIAM Journal on Optimization 2008 1184 1210

[18] M. Z. Jacobson. Fundamentals of Atmospheric Modeling, Cambridge, second edition, 2005.

[19] C. Landry. Numerical Analysis of Optimization-Constrained Differential Equations: Applications to Atmospheric Chemistry. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2009. Available at http://library.epfl.ch/theses/?nr=4345.

[20] C. Landry, A. Caboussat, E. Hairer SIAM J. Sci. Comp. 2009 3806 3826

[21] D. Lanser, J. Verwer J. Comput. Appl. Math. 1999 201 216

[22] C. M. Mcdonald, C. A. Floudas Computers and Chemical Engineering 1996 1 23

[23] G. J. Mcrae, W. R. Goodin, J. H. Seinfeld J. Comput. Phys. 1982 1 42

[24] Z. Meng, D. Dabdub, J. H. Seinfeld J. Geophys. Res. 1998 3419 3436

[25] K. Nguyen, A. Caboussat, D. Dabdub Atmos. Env. 2009 6287 6295

[26] K. Nguyen, D. Dabdub Aerosol Science & Technology 2002 407 418

[27] R. T. Rockafellar. Convex analysis, Princeton University Press, Princeton, NJ, 1970.

[28] J. H. Seinfeld, S. N. Pandis. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998.

[29] S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller, editors. Intergovernmental Panel on Climate Change: Fourth Assessment Report: Climate Change 2007, The Physical Science Basis, Cambridge University Press, 2007.

[30] B. Sportisse Comput. Geosci. 2007 159 181

[31] J.G. Verwer, W. Hundsdorfer, J.G. Blom Surveys Math. Ind. 2002 107 174

[32] R. A. Zaveri, R. C. Easter, J. D. Fast, L. K. Peters J. Geophys. Res. D (Atmospheres) 2008 D13204

[33] R. A. Zaveri, R. C. Easter, L. K. Peters J. Geophys. Res. D (Atmospheres) 2005 D24203

Cité par Sources :