Voir la notice de l'article provenant de la source EDP Sciences
T. Bodnár 1 ; K.R. Rajagopal 2 ; A. Sequeira 3
@article{MMNP_2011_6_5_a0, author = {T. Bodn\'ar and K.R. Rajagopal and A. Sequeira}, title = {Simulation of the {Three-Dimensional} {Flow} of {Blood} {Using} a {Shear-Thinning} {Viscoelastic} {Fluid} {Model}}, journal = {Mathematical modelling of natural phenomena}, pages = {1--24}, publisher = {mathdoc}, volume = {6}, number = {5}, year = {2011}, doi = {10.1051/mmnp/20116501}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116501/} }
TY - JOUR AU - T. Bodnár AU - K.R. Rajagopal AU - A. Sequeira TI - Simulation of the Three-Dimensional Flow of Blood Using a Shear-Thinning Viscoelastic Fluid Model JO - Mathematical modelling of natural phenomena PY - 2011 SP - 1 EP - 24 VL - 6 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116501/ DO - 10.1051/mmnp/20116501 LA - en ID - MMNP_2011_6_5_a0 ER -
%0 Journal Article %A T. Bodnár %A K.R. Rajagopal %A A. Sequeira %T Simulation of the Three-Dimensional Flow of Blood Using a Shear-Thinning Viscoelastic Fluid Model %J Mathematical modelling of natural phenomena %D 2011 %P 1-24 %V 6 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116501/ %R 10.1051/mmnp/20116501 %G en %F MMNP_2011_6_5_a0
T. Bodnár; K.R. Rajagopal; A. Sequeira. Simulation of the Three-Dimensional Flow of Blood Using a Shear-Thinning Viscoelastic Fluid Model. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 5, pp. 1-24. doi : 10.1051/mmnp/20116501. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116501/
[1] Int. J. of Cardiovascular Medicine and Science 2004 59 68
,[2] C. R. Méchanique 2002 557 562
,[3] J. of Theoretical Medicine 2003 183 218
, ,[4] Pathophysiology Haemostasis Thrombosis 2005 109 120
, ,[5] J. of Theoretical Biology 2008 725 738
, ,[6] N. Arada, M. Pires, A. Sequeira. Viscosity effects on flows of generalized Newtonian fluids through curved pipes. Computers and Mathematics with Applications, 53 (2007), pp. 625-646.
[7] N. Arada, M. Pires, A. Sequeira. Numerical simulations of shear-thinning Oldroyd-B fluids in curved pipes. IASME Transactions, Issue 6, 2 (2005), pp. 948-959.
[8] Biorheology 1994 565 586
, ,[9] Annu. Rev. Fluid Mech. 1983
, ,[10] T. Bodnár, A. Sequeira. Numerical Study of the Significance of the Non-Newtonian Nature of Blood in Steady Flow Through a Stenosed Vessel. In: Advances in Mathematical Fluid Mechanics (edited by R. Rannacher A. Sequeira), pp. 83–104. Springer Verlag (2010).
[11] T. Bodnár , J. Příhoda . Numerical simulation of turbulent free-surface flow in curved channel. Journal of Flow, Turbulence and Combustion, 76 (4) (2006) 429–442.
[12] Computational and Mathematical Methods in Medicine 2008 83 104
,[13] T. Bodnár, A. Sequeira, L. Pirkl. Numerical Simulations of Blood Flow in a Stenosed Vessel under Different Flow Rates using a Generalized Oldroyd - B Model In: Numerical Analysis and Applied Mathematics, Vols 1 and 2. Melville, New York: American Institute of Physics, (2009), vol. 2, pp. 645–648.
[14] Applied Mathematics and Computation 2011 5055 5067
, ,[15] Nature 1965 617 618
,[16] Journal of Applied Physiology 1966 81 87
, , , ,[17] Science 1967 829 831
, , ,[18] Science 1967 827 829
, , ,[19] American Journal of Physiology 1970 136 142
, , ,[20] Biophysical Journal 1978 463 487
, , , ,[21] Biophysical Journal 1976 1 11
,[22] J. Fluid Mech. 2001 327 357
, ,[23] Journal of Biomechanics 1999 601 608
, ,[24] Int. J. Numer. Meth. Fluids 2000 863 879
, ,[25] A. Jameson, W.Schmidt, E. Turkel. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping scheme. In: AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto (1981), AIAA paper 81-1259.
[26] Comp. Methods in Biomech. and Biomech. Eng. 2001 149 163
,[27] Rheol. Acta 1978 643 653
[28] Journal of Non-Newtonian Fluid Mechanics 2000 207 227
,[29] Proc. R. Soc. A 2011 39 58
,[30] Biophysical Journal 1972 1205 1217
[31] Biorheology 1973 375 381
[32] Biorheology 1994 179 192
[33] J. Comput. Phys. 1999 310 344
, ,Cité par Sources :