Application of the Method of Generating Functions to the Derivation of Grad’s N-Moment Equations for a Granular Gas
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 4, pp. 151-174.

Voir la notice de l'article provenant de la source EDP Sciences

A computer aided method using symbolic computations that enables the calculation of the source terms (Boltzmann) in Grad’s method of moments is presented. The method is extremely powerful, easy to program and allows the derivation of balance equations to very high moments (limited only by computer resources). For sake of demonstration the method is applied to a simple case: the one-dimensional stationary granular gas under gravity. The method should find applications in the field of rarefied gases, as well. Questions of convergence, closure are beyond the scope of this article.
DOI : 10.1051/mmnp/20116407

S. H. Noskowicz 1 ; D. Serero 2

1 School of Mechanical Engineering, Faculty of engineering, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
2 Institute for Multiscale Simulation, Universität Erlangen-Nürnberg, Nägelsbachstraße 49b, 91052 Erlangen, Germany
@article{MMNP_2011_6_4_a7,
     author = {S. H. Noskowicz and D. Serero},
     title = {Application of the {Method} of {Generating} {Functions} to the {Derivation} of {Grad{\textquoteright}s} {N-Moment} {Equations} for a {Granular} {Gas}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {151--174},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2011},
     doi = {10.1051/mmnp/20116407},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116407/}
}
TY  - JOUR
AU  - S. H. Noskowicz
AU  - D. Serero
TI  - Application of the Method of Generating Functions to the Derivation of Grad’s N-Moment Equations for a Granular Gas
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 151
EP  - 174
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116407/
DO  - 10.1051/mmnp/20116407
LA  - en
ID  - MMNP_2011_6_4_a7
ER  - 
%0 Journal Article
%A S. H. Noskowicz
%A D. Serero
%T Application of the Method of Generating Functions to the Derivation of Grad’s N-Moment Equations for a Granular Gas
%J Mathematical modelling of natural phenomena
%D 2011
%P 151-174
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116407/
%R 10.1051/mmnp/20116407
%G en
%F MMNP_2011_6_4_a7
S. H. Noskowicz; D. Serero. Application of the Method of Generating Functions to the Derivation of Grad’s N-Moment Equations for a Granular Gas. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 4, pp. 151-174. doi : 10.1051/mmnp/20116407. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116407/

[1] A. E. Beylich Phys. Fluids 2000 444 465

[2] G. A. Bird. Molecular gas dynamics and the direct simulation theory of gas flows. Oxford University Press, 1994.

[3] M. Bisi, G. Spiga, G. Toscani Phys. Fluids 2004 4235 4247

[4] A. V. Bobylev Sov. Phys., dokl 1982 29 31

[5] J. J. Brey, J.W. Dufty, C. S. Kim, A. Santos Phys. Rev. E 1997 4638 4653

[6] J. J. Brey, W.-J Ruiz-Montero, F. Moreno. Phys. Rev. E 2001

[7] N.V. Briliantov and T. Pöschel. Kinetic theory of granular gases. Oxford University Press, Oxford, 2004.

[8] C. S. Campbell Annu. Rev. Fluid Mech. 1990 57 92

[9] C. Cercignani. Theory and application of the Boltzmann equation. Scottish Acad. Press, Edinburgh and London, 1975.

[10] S. Chapman and T. G. Cowling. The mathematical theory of nonuniform gases. Cambridge University Press, Cambridge, 1970.

[11] L. García-Colin, R. M. Velasco, F. J. Uribe J. Non-Equilib. Thermodyn. 2004 257 277

[12] V. Garzó, J. W. Dufty Phys. Rev. E 1998 5895 5911

[13] I. Goldhirsch Annu. Rev. Fluid Mech. 2003 267 293

[14] S. H. Noskowicz, D. Serero, and O. Bar-Lev. Generating functions and kinetic theory: a computer aided method. Application: constitutive relations for granular gases up to moderate densities. in preparation (2011).

[15] A. Goldshtein, M. Shapiro J. Fluid Mech. 1995 75 114

[16] H. Grad Commun. Pure Appl. Maths 1949 331 407

[17] I. N. Ivchenko, S. K. Loyalka, R.V. Thompson Z. angew. Math. Phys. 1998 955 966

[18] J. T. Jenkins, M. W. Richman Arch. Rational. Mech. Anal. 2001 355 377

[19] M. N. Kogan. Rarefied gas dynamics. Plenum, New York, 1969.

[20] C. D. Levermore, W.J. Morokoff SIAM J.App. Math. 1998 72 96

[21] D. Mintzer Phys. Fluids 1965 1076 1090

[22] R. Nagai, H. Honma, K. Maeno, A. Sakurai Shock Waves 2003 213 220

[23] S. H. Noskowicz, O. Bar-Lev, D. Serero, I. Goldhirsch Europhys. Lett. 2007 60001

[24] Y. G. Ohr Phys. Fluids 2001 2105 2114

[25] R. Ramirez, D. Risso, R. Soto, P. Cordero Phys. Rev. E 2000 2521 2530

[26] P. Rosenau Phys. Rev. A 1989 7193 7196

[27] N. Sela, I. Goldhirsch J. Fluid Mech. 1998 41 74

[28] R. Soto Phys. Rev. E 2004 61305 61310

[29] H. Struchtrup, M. Torrilhon Phys. Fluids 2003 2668 2680

[30] T. Thatcher, Y. Zheng, H. Struchtrup Progress in Computational Fuid Dynamics 2008 69 83

Cité par Sources :