Choosing Hydrodynamic Fields
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 4, pp. 19-36.

Voir la notice de l'article provenant de la source EDP Sciences

Continuum mechanics (e.g., hydrodynamics, elasticity theory) is based on the assumption that a small set of fields provides a closed description on large space and time scales. Conditions governing the choice for these fields are discussed in the context of granular fluids and multi-component fluids. In the first case, the relevance of temperature or energy as a hydrodynamic field is justified. For mixtures, the use of a total temperature and single flow velocity is compared with the use of multiple species temperatures and velocities.
DOI : 10.1051/mmnp/20116402

J. W. Dufty 1 ; J. J. Brey 2

1 Department of Physics, University of Florida, Gainesville, FL 32611, USA
2 Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
@article{MMNP_2011_6_4_a2,
     author = {J. W. Dufty and J. J. Brey},
     title = {Choosing {Hydrodynamic} {Fields}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {19--36},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2011},
     doi = {10.1051/mmnp/20116402},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116402/}
}
TY  - JOUR
AU  - J. W. Dufty
AU  - J. J. Brey
TI  - Choosing Hydrodynamic Fields
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 19
EP  - 36
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116402/
DO  - 10.1051/mmnp/20116402
LA  - en
ID  - MMNP_2011_6_4_a2
ER  - 
%0 Journal Article
%A J. W. Dufty
%A J. J. Brey
%T Choosing Hydrodynamic Fields
%J Mathematical modelling of natural phenomena
%D 2011
%P 19-36
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116402/
%R 10.1051/mmnp/20116402
%G en
%F MMNP_2011_6_4_a2
J. W. Dufty; J. J. Brey. Choosing Hydrodynamic Fields. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 4, pp. 19-36. doi : 10.1051/mmnp/20116402. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116402/

[1] J. J. Brey, J. W. Dufty, A. Santos J. Stat. Phys. 1997 1051 1066

[2] J. J. Brey, M. J. Ruiz-Montero Phys. Rev. E 2009

[3] N. Brilliantov, T. Pöschel. Kinetic Theory of Granular Gases. Oxford, New York, 2004.

[4] S. R. Dahl, C. M.Hrenya, V. Garzó, J. W. Dufty Phys. Rev. E 2006

[5] J. W. Dufty. Granular Fluids. R. Meyers, ed. Encyclopedia of Complexity and Systems Science. Springer, Heidelberg, 2009. arXiv:0709.0479.

[6] J. W. Dufty. Nonequilibrium Statistical Mechanics and Hydrodynamics for a Granular Fluid. B. Cichocki, M. Napiorkowski, J. Piasecki, eds. 2nd Warsaw School on Statistical Physics. Warsaw University Press, Warsaw, 2008. arXiv:0707.3714.

[7] J. W. Dufty, A. Baskaran, J J. Brey Phys. Rev. E 2008

[8]

[9] J. Ferziger, H. Kaper. Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam, 1972.

[10] D. Forster. Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions. Benjamin, Reading, MA, 1975.

[11] V. Garzó, J. Dufty Phys. Rev. E 1999 5706 5713

[12] I. Goldhirsch Annual Review of Fluid Mechanics 2003 267 293

[13] H. Grabert. Projection Operator Techniques in Nonequilibrium Statistical Mechanics. Springer, Berlin, 1982.

[14] T. Halsey, A. Mehta, eds. Challenges in Granular Physics. World Scientific, Singapore, 2002.

[15] H. Iddir, H. Arastoopour AIChe. J. 2005 1620 1632

[16] J. Jenkins, F. Mancini J. Appl. Mech. 1987 27 34

[17] D. Jou, J. Casas-Vazquez, G. Lebon Rep. Prog. Phys. 1988 1105

[18] L. P. Kadanoff Rev. Mod. Phys. 1999 435 444

[19] J. Lutsko Phys. Rev. Lett. 1997 243 246

[20] J. Lutsko Phys. Rev. E 2004

[21] P. Martin, O. Parodi, P. Pershan Phys. Rev. A 1972 2401 2420

[22] J. A. McLennan. Introduction to Nonequilibrium Statistical Mechanics. Prentice-Hall, New Jersey, 1989.

[23] J. M. Montanero, V. Garzó Granular Matter 2002 17 24

[24] A. Santos, J. Dufty. Strong breakdown of equipartition in uniform gas mixtures. M. S. Ivanov, A. K. Rebrov, eds. Rarefied Gas Dynamics. Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2007.

[25] R. Zwanzig. Nonequilibrium Statistical Mechanics, Oxford, NY, 2001.

[26] R. Zwanzig Phys. Rev. 1961 983 992

Cité par Sources :