Automated CFD Analysis for the Investigation of Flight Handling Qualities
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 166-188.

Voir la notice de l'article provenant de la source EDP Sciences

Physics based simulation is widely seen as a way of increasing the information about aircraft designs earlier in their definition, thus helping with the avoidance of unanticipated problems as the design is refined. This paper reports on an effort to assess the automated use of computational fluid dynamics level aerodynamics for the development of tables for flight dynamics analysis at the conceptual stage. These tables are then used to calculate handling qualities measures. The methodological questions addressed are a)geometry and mesh treatment for automated analysis from a high level conceptual aircraft description and b) sampling and data fusion to allow the timely calculation of large data tables. The test case used to illustrate the approaches is based on a refined design passenger jet wind tunnel model. This model is reduced to a conceptual description, and the ability of this geometry to allow calculations relevant to the final design to be drawn is then examined. Data tables are then generated and handling qualities calculated.
DOI : 10.1051/mmnp/20116307

M. Ghoreyshi 1 ; K. J. Badcock 1 ; A. Da Ronch 1 ; D. Vallespin 1 ; A. Rizzi 2

1 School of Engineering, University of Liverpool, Liverpool, UK, L69 3GH
2 Aeronautical and Vehicle Engineering, Royal Institute of Technology (KTH), SE-100 44, Sweden
@article{MMNP_2011_6_3_a7,
     author = {M. Ghoreyshi and K. J. Badcock and A. Da Ronch and D. Vallespin and A. Rizzi},
     title = {Automated {CFD} {Analysis} for the {Investigation} of {Flight} {Handling} {Qualities}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {166--188},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2011},
     doi = {10.1051/mmnp/20116307},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116307/}
}
TY  - JOUR
AU  - M. Ghoreyshi
AU  - K. J. Badcock
AU  - A. Da Ronch
AU  - D. Vallespin
AU  - A. Rizzi
TI  - Automated CFD Analysis for the Investigation of Flight Handling Qualities
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 166
EP  - 188
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116307/
DO  - 10.1051/mmnp/20116307
LA  - en
ID  - MMNP_2011_6_3_a7
ER  - 
%0 Journal Article
%A M. Ghoreyshi
%A K. J. Badcock
%A A. Da Ronch
%A D. Vallespin
%A A. Rizzi
%T Automated CFD Analysis for the Investigation of Flight Handling Qualities
%J Mathematical modelling of natural phenomena
%D 2011
%P 166-188
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116307/
%R 10.1051/mmnp/20116307
%G en
%F MMNP_2011_6_3_a7
M. Ghoreyshi; K. J. Badcock; A. Da Ronch; D. Vallespin; A. Rizzi. Automated CFD Analysis for the Investigation of Flight Handling Qualities. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 166-188. doi : 10.1051/mmnp/20116307. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116307/

[1] J. J. Alonso, J.R. Martins, J. J. Reuther, R. Haimes, C. A. Crawford. High-fidelity aero-structural design using a parametric CAD-based model.16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, June 23- 26, 2003, AIAA-2003-3429.

[2] K. J. Badcock, B. E. Richards, M. A. Woodgate Progress in Aerospace Sciences 2000 351 392

[3] J. T. Baker Progress in Aerospace Sciences 2005 29 63

[4] K. Becker, J. Vassberg Notes on Num. Fluid Mechanics 2009 209 220

[5] A. Berard, A. Rizzi, A. T. Isikveren. CADac: a new geometry construction tool for aerospace vehicle pre-design and conceptual design. 26th Applied Aerodynamics Conference, Honolulu, Hawaii, USA, August 18-21, 2008, AIAA-2008-6219.

[6] A. Bergmann, A. Hubner, T. Loeser Progress in Aerospace Sciences 2008 121 137

[7] W. B. Blake. Prediction of Fighter Aircraft Dynamic Derivatives Using Digital Datcom. AlAA 3rd Applied Aerodynamics Conference, Colorado Springs, Colorado, October 14-16, 1985, AIAA-85-4070.

[8] K. Bowcutt. A perspective on the future of aerospace vehicle design. 12th AIAA International Space Planes and Hypersonic Systems and Technologies, Norfolk, Virginia, Dec. 15-19, 2003, AIAA 2003-6957.

[9] G. E. Cooper Aeron Eng. Rev. 1957 47 51

[10] P. Eliasson. EDGE, a Navier-Stokes solver for unstructured grids, finite volumes for complex applications III: problems and perspectives. Hermes Penton Science, London, 2002.

[11] J.R. Gloudemans, P. C. Davis, P. A. Gelhausen. A rapid geometry modeler for conceptual aircraft. 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 15-18, 1996, AIAA-1996-0052.

[12] T. Goetzendorf-Grabowski, J. B. Vos, S. Sanchi, P. Molitor, M. Tomac, A. Rizzi. Coupling adaptive-fidelity CFD with S analysis to predict flying qualities. 27th AIAA Applied Aerodynamics Conference, San Antonio, Texas, June 22-25, 2009, AIAA-2009-3630.

[13] M. Ghoreyshi, K. J. Badcock, M. A. Woodgate Journal of Aircraft 2009 972 980

[14] R. Haimes. CAPRI: Computational analysis programming interface. CAPRI technical guide, Massachusetts Institute of Technology, 1998.

[15] A. T. Isikveren. Quasi-analytical modelling and optimisation techniques for transport aircraft design. PhD Thesis, Department of Aeronautics, Royal Institute of Technology, Stockholm, Sweden, 2002.

[16] R. von Kaenel, A. Rizzi, J. Oppelstrup, T. Goetzendorf-Grabowski, M. Ghoreyshi, L. Cavagna, A. Berard. CEASIOM: simulating stability control with CFD/CSM in aircraft conceptual design, 26th International Congress of the Aeronautical Sciences, ICAS, 2008.

[17] F. Ladeinde. Truely automatic CFD mesh generation with support for reverse engineering. Aerospace Sciences Meeting and Exhibit, 37th, Reno, NV, Jan. 11-14, 1999, AIAA 99-0828.

[18] R. Lohner Journal of Finite Elements in Analysis and Design 1997 111 134

[19] R. Lohner, J. Cebral International Journal for Numerical Methods in Engineering 2000 219 232

[20] W. H. Mason, D. L. Knill, A. A. Giunta, B. Grossman, L. T. Watson, R. T. Haftka. Getting the full benefits of CFD in conceptual design. 16th Applied Aerodynamics Conference, Albuquerque, NM, June 15-18, 1998, AIAA 98-2513.

[21] D. N. Mavris, D. A. DeLaurentis, D. S. Soban. Probabilistic assessment of handling qualities characteristics in preliminary aircraft design. 36th Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 12-15, 1998, AIAA 98-0492.

[22] B. Mialon, S. Ben Khelil, A. Huebner, J.-C. Jouhaud, G. Roge, S. Hitzel, K. Badcock, P. Eliasson, A. Khabrov, M. Lahuta. European benchmark on numerical prediction of stability and control derivatives. 27th AIAA Applied Aerodynamics Conference, San Antonio, TX, June 22-25, 2009, AIAA-2009-4116.

[23] D. J. McCormick. An analysis of using CFD in conceptual aircraft design, M.S. Thesis, Dept. of Mechanical Engineering, Virginia Polytechnic Institute, Blacksburg, VA, 2002.

[24] T. Melin, A. T. Isikveren, A. Rizzi, C. Stamblewski, H. V. Anders Journal of Aerospace Engineering 2007 175 192

[25] D. P. Raymer. Aircraft design: A conceptual approach. AIAA Education Series, Reston, VA, USA, 2006,

[26] V. Razgonyaev, W.H. Mason. An evaluation of aerodynamic prediction methods applied to the XB-70 for use in high speed aircraft stability and control system design. 33rd Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1995, AIAA-95-0759.

[27] S. E. Rogers, M. J. Aftomis, S. A. Pandya, N. M. Chaderjian, E. T. Tejnil, J. U. Ahmad. Automated CFD parameter studies on distributed parallel computers. 16th AIAA Computational Fluid Dynamics Conference, Orlando, Florida, 2003, AIAA 2003-4229.

[28] D. L. Rodriguez, P. Sturdza. A rapid geometry engine for preliminary aircraft design. 44th Aerospace Science Meeting and Exhibit, Reno, NV, Jan. 9-12, 2006, AIAA-2006-929.

[29] J. Roskam. Airplane design. Roskam Aviation and Engineering Corporation, Kansas, USA, 1990.

[30] J. E. Williams, S. R. Vukelich. The USAF stability and control digital DATCOM. McDonnell Douglas Astona UTICS Company, St Louis Division, St Louis, Missouri, AFFDL-TR-79-3032, 1979.

Cité par Sources :