Integrated Design of an Active Flow Control System Using a Time-Dependent Adjoint Method
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 141-165.

Voir la notice de l'article provenant de la source EDP Sciences

An exploratory study is performed to investigate the use of a time-dependent discrete adjoint methodology for design optimization of a high-lift wing configuration augmented with an active flow control system. The location and blowing parameters associated with a series of jet actuation orifices are used as design variables. In addition, a geometric parameterization scheme is developed to provide a compact set of design variables describing the wing shape. The scaling of the implementation is studied using several thousand processors and it is found that asynchronous file operations can greatly improve the overall performance of the approach in such massively parallel environments. Three design examples are presented which seek to maximize the mean value of the lift coefficient for the coupled system, and results demonstrate improvements as high as 27% relative to the lift obtained with non-optimized actuation. This lift gain is more than three times the incremental lift provided by the non-optimized actuation.
DOI : 10.1051/mmnp/20116306

E.J. Nielsen 1 ; W.T. Jones 1

1 Computational AeroSciences Branch, NASA Langley Research Center Hampton, Virginia 23693 USA
@article{MMNP_2011_6_3_a6,
     author = {E.J. Nielsen and W.T. Jones},
     title = {Integrated {Design} of an {Active} {Flow} {Control} {System} {Using} a {Time-Dependent} {Adjoint} {Method}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {141--165},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2011},
     doi = {10.1051/mmnp/20116306},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116306/}
}
TY  - JOUR
AU  - E.J. Nielsen
AU  - W.T. Jones
TI  - Integrated Design of an Active Flow Control System Using a Time-Dependent Adjoint Method
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 141
EP  - 165
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116306/
DO  - 10.1051/mmnp/20116306
LA  - en
ID  - MMNP_2011_6_3_a6
ER  - 
%0 Journal Article
%A E.J. Nielsen
%A W.T. Jones
%T Integrated Design of an Active Flow Control System Using a Time-Dependent Adjoint Method
%J Mathematical modelling of natural phenomena
%D 2011
%P 141-165
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116306/
%R 10.1051/mmnp/20116306
%G en
%F MMNP_2011_6_3_a6
E.J. Nielsen; W.T. Jones. Integrated Design of an Active Flow Control System Using a Time-Dependent Adjoint Method. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 141-165. doi : 10.1051/mmnp/20116306. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116306/

[1] W.K. Anderson, D.L. Bonhaus Comp. and Fluids 1994 1 21

[2] W.K. Anderson, V. Venkatakrishnan Comp. and Fluids 1999 443 480

[3] W.K. Anderson, D.L. Bonhaus AIAA J. 1999 185 191

[4] O. Baysal, M. Koklu, N. Erbas J. Fluids Eng. 2006 1053 1062

[5] T.R. Bewley Prog. in Aero. Sci. 2001 21 58

[6] R.T. Biedron, J.L. Thomas. Recent enhancements to the FUN3D Flow solver for moving mesh applications. AIAA 2009-1360 (2009).

[7] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, M. Snir Int. J. High Perf. Comp. App. 2009 374 388

[8] S. Choi, M. Potsdam, K. Lee, G. Iaccarino, J.J. Alonso. Helicopter rotor design using a time-spectral and adjoint-based method. AIAA 2008-5810 (2008).

[9] S.S. Collis, R.D. Joslin, A. Seifert, V. Theofilis Prog. in Aero. Sci. 2004 237 289

[10] R. Duvigneau, M. Visonneau Comp. and Fluids 2006 624 638

[11] D. Greenblatt, I.J. Wygnanski Prog. in Aero. Sci. 2000 487 545

[12] Z.-H. Han, K.-S. Zhang, W.-P. Song, Z.-D. Qiao AIAA J. Aircraft 2010 603 612

[13] http://fun3d.larc.nasa.gov, last accessed December 1, 2010.

[14] http://wiki.lustre.org/index.php/Main_Page, last accessed December 1, 2010.

[15] L. Huang, G. Huang, R. Lebeau AIAA J. Aircraft 2007 1337 1349

[16] W.T. Jones. GridEx – an integrated grid generation package for CFD. AIAA 2003-4129 (2003).

[17] L. Kaufman, D. Gay. PORT Library: optimization and mathematical programming – user’s manual. Bell Laboratories, 1997.

[18] W.R. Lanser, L.A. Meyn AIAA J. Aircraft 1994 1365 1371

[19] C. Leclerc, E. Levallois, P. Gillieron, A. Kourta. Aerodynamic drag reduction by synthetic jet: a 2D numerical study around a simplified car. AIAA 2006-3337 (2006).

[20] E.M. Lee-Rausch, V.N. Vatsa, C.L. Rumsey. Computational analysis of dual radius circulation control airfoils. AIAA 2006-3012 (2006).

[21] E.M. Lee-Rausch, D.P. Hammond, E.J. Nielsen, S.Z. Pirzadeh, C.L. Rumsey. Application of the FUN3D unstructured-grid Navier-Stokes solver to the 4th AIAA Drag Prediction Workshop cases. AIAA 2010-4551 (2010).

[22] J.N. Lyness. Numerical algorithms based on the theory of complex variables. Proc. ACM 22nd Nat. Conf., Thomas Book Co., Washington, D.C. (1967), 124-134.

[23] D.J. Mavriplis. Solution of the unsteady discrete adjoint for three- dimensional problems on dynamically deforming unstructured meshes. AIAA 2008-727 (2008).

[24] M. Meunier AIAA J. 2009 1145 1157

[25] F. Muldoon AIAA J. 2008 2443 2458

[26] S. Nadarajah, A. Jameson. Optimal control of unsteady flows using time accurate and non-linear frequency domain methods. AIAA 2002-5436 (2002).

[27] J.C. Newman, A.C. Taylor, R.W. Barnwell, P.A. Newman, G.J.-W. Hou AIAA J. Aircraft 1999 87 96

[28] E.J. Nielsen, B. Diskin, N.K. Yamaleev AIAA J. 2010 1195 1206

[29] E.J. Nielsen. Aerodynamic design sensitivities on an unstructured mesh using the Navier-Stokes equations and a discrete adjoint formulation. Ph.D. Dissertation, Dept. of Aero. and Ocean Eng., Virg. Poly. Inst. and St. Univ. (1998).

[30] E.J. Nielsen, W.K. Anderson AIAA J. 2002 1155 1163

[31] E.J. Nielsen, W.K. Anderson AIAA J. 1999 1411 1419

[32] E.J. Nielsen, J. Lu, M.A. Park, D.L. Darmofal Comp. and Fluids 2004 1131 1155

[33] E.J. Nielsen, W.L. Kleb AIAA J. 2006 827 836

[34] E.J. Nielsen, M.A. Park AIAA J. 2006 948 953

[35] M. Nyukhtikov, N. Smelova, B.E. Mitchell, D.G. Holmes. Optimized dual-time stepping technique for time-accurate Navier-Stokes calculation. Proceedings of the 10th Int. Sym. on Unst. Aero., Aeroac., and Aeroelas. of Turbomach. (2003).

[36] O.J. Ohanian III, E.D. Karni, W.K. Londenberg, P.A. Gelhausen. Ducted-fan force and moment control via steady and synthetic jets. AIAA 2009-3622 (2009).

[37] J.E.V. Peter, R.P. Dwight Comp. and Fluids 2010 373 391

[38] L. Piegl, W. Tiller. The NURBS book (2nd ed.). Springer-Verlag New York, New York, 1997.

[39] S. Pirzadeh AIAA J. 1996 43 49

[40] P.L. Roe J. Comp. Phys. 1981 357 372

[41] J.L. Rogers. A parallel approach to optimum actuator selection with a genetic algorithm. AIAA 2000-4484 (2000).

[42] J.M. Rullan, P.P. Vlachos, D.P. Telionis, M.D. Zeiger AIAA J. Aircraft 2006 1738 1746

[43] M.P. Rumpfkeil, D.W. Zingg. A general framework for the optimal control of unsteady flows with applications. AIAA 2007-1128 (2007).

[44] Y. Saad, M.H. Schultz SIAM J. Sci. and Stat. Comp. 1986 856 869

[45] J.A. Samareh. A Novel shape parameterization approach. NASA TM-1999-209116 (1999).

[46] J.A. Samareh. Aerodynamic shape optimization based on free-form deformation. AIAA 2004-4630 (2004).

[47] A. Seifert, S. David, I. Fono, O. Stalnov, I. Dayan AIAA J. Aircraft 2010 864 874

[48] A. Shmilovich, Y. Yadlin AIAA J. Aircraft 2009 1354 1364

[49] P.R. Spalart, S.R. Allmaras La Recherche Aerospatiale 1994 5 21

[50] E. Stanewsky Prog. in Aero. Sci. 2001 583 667

[51] M. Tadjouddine, S.A. Forth, N. Qin. Automatic differentiation of a time-dependent CFD solver for optimisation of a synthetic jet. Presented at the Int. Conf. of Num. Anal. and App. Math., Rhodes, Greece (2005).

[52] V.N. Vatsa, M.H. Carpenter, D.P. Lockard. Re-evaluation of an optimized second order backward difference (BDF2OPT) scheme for unsteady flow applications. AIAA 2010-0122 (2010).

[53] N. Yamaleev, B. Diskin, E. Nielsen J. Comp. Phys. 2010 5394 5407

Cité par Sources :