Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2011_6_3_a5, author = {P. E. Vincent and A. Jameson}, title = {Facilitating the {Adoption} of {Unstructured} {High-Order} {Methods} {Amongst} a {Wider} {Community} of {Fluid} {Dynamicists}}, journal = {Mathematical modelling of natural phenomena}, pages = {97--140}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2011}, doi = {10.1051/mmnp/20116305}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116305/} }
TY - JOUR AU - P. E. Vincent AU - A. Jameson TI - Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists JO - Mathematical modelling of natural phenomena PY - 2011 SP - 97 EP - 140 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116305/ DO - 10.1051/mmnp/20116305 LA - en ID - MMNP_2011_6_3_a5 ER -
%0 Journal Article %A P. E. Vincent %A A. Jameson %T Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists %J Mathematical modelling of natural phenomena %D 2011 %P 97-140 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116305/ %R 10.1051/mmnp/20116305 %G en %F MMNP_2011_6_3_a5
P. E. Vincent; A. Jameson. Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 97-140. doi : 10.1051/mmnp/20116305. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116305/
[1] R. Abgrall. On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. ICASE Report 92-74, (1992).
[2] AIAA Journal 1988 649 654
, ,[3] SIAM J. Numer. Anal. 2001 1749 1779
, , ,[4] G. E. Barter and D. L. Darmofal. Shock capturing with higher-order PDE-based artificial viscosity. AIAA Paper 2007-3823, 2007.
[5] J. Comput. Phys. 2010 1810 1827
,[6] T. J. Barth and H. Deconinck. High-order methods for computational physics. Springer Verlag, 1999.
[7] T. J. Barth and P. O. Frederickson. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA Paper 90-0013, 1990.
[8] J. Comput. Phys. 1997 267 279
,[9] J. Comput. Phys. 1997 251 285
,[10] J. Comput. Phys. 2009 4965 4969
,[11] Comput. Method. Appl. M. 1982 199 259
,[12] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral methods: Fundamentals in single domains. Springer, 2006.
[13] P. Castonguay, C. Liang, and A. Jameson. Simulation of transitional flow over airfoils using the spectral difference method. AIAA Paper 2010-4626, 2010.
[14] AIAA Journal 1988 841 851
[15] AIAA Journal 2000 2238 2245
,[16] SIAM J. Numer. Anal. 2009 1319 1365
, ,[17] Math. Comput. 1990 545 581
, ,[18] B. Cockburn, G. E. Karniadakis, and C. W. Shu. Discontinuous Galerkin methods: Theory, computation and applications. Springer, 2000.
[19] TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems J. Comput. Phys. 1989 90 113
, ,[20] Math. Comput. 1989 411 435
,[21] SIAM J. Numer. Anal. 1998 2440 2463
,[22] J. Comput. Phys. 1998 199 224
,[23] J. Sci. Comput. 2001 173 261
,[24] Phys. Fluids 2007 55 103
[25] J. Comput. Phys. 2004 594 601
,[26] J. Comput. Phys. 2005 379 385
,[27] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric analysis: Toward integration of CAD and FEA. Wiley, 2009.
[28] M. Delanaye and Y. Liu. uadratic reconstruction finite volume schemes on 3D arbitrary unstructured polyhedral grids. AIAA Paper 1999-3259, 1999.
[29] M. O. Deville, P. F. Fischer, and E. H. Mund. High-order methods for incompressible fluid flow. Cambridge University Press, 2002.
[30] S. Dey, R. M. O’bara, and M. S. Shephard. Curvilinear mesh generation in 3D. In Proceedings of the Eighth International Meshing Roundtable, John Wiley Sons, (1999) 407-417.
[31] J. Comput. Phys. 2010 512 526
, , ,[32] J. Douglas and T. Dupont. Interior penalty procedures for elliptic and parabolic Galerkin methods. In Computing Methods in Applied Sciences (Second International Symposium, Versailles, 1975), Springer, (1976), 207-216.
[33] J. Turbul. 2000 1 22
,[34] J. Comput. Phys. 2008 8209 8253
, , ,[35] J. K. Fidkowski and D. L. Darmofal. Output-based error estimation and mesh adaptation in computational fluid dynamics: Overview and recent results. AIAA Paper 2009-1303, 2009.
[36] J. Comput. Phys. 2005 92 113
, , ,[37] SIAM J Sci Comput 2010 261 1287
,[38] J. Comput. Phys. 1998 194 212
[39] M. Galbraith and M. Visbal. Implicit large eddy simulation of low Reynolds number flow past the SD7003 airfoil. AIAA Paper 2008-225, 2008.
[40] J. Sci. Comput. 2010 323 336
, ,[41] J. Sci. Comput. 2008 260 286
, ,[42] Int. J. Numer. Meth. Eng. 2009 1309 1331
,[43] SIAM Review 2001 89 112
, ,[44] T. Haga, H. Gao, and Z. J. Wang. A high-order unifying discontinuous formulation for 3D mixed grids. AIAA Paper 2010-540, 2010.
[45] Commun. Comput. Phys. 2009 978 996
, ,[46] J. Comput. Phys. 1983 357 393
[47] J. Comput. Phys. 1987 231 303
, , ,[48] Int. J. Numer. Meth. Fluids 2006 1131 1156
[49] AIAA Journal 2008 894 916
,[50] Comput. Method Appl. M. 1999 361 381
,[51] J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods - Algorithms, analysis, and applications. Springer, 2008.
[52] J. Comput. Phys. 1999 97 127
,[53] T. J. R. Hughes and A. N. Brooks. A multidimensional upwind scheme with no crosswind diffusion. In T. J. R. Hughes, editor, Finite element methods for convection dominated flows, ASME, New York, (1979), 19-35.
[54] T. J. R. Hughes and A. N. Brooks. A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the streamline upwind procedure. In R. H. Gallagher, D. H. Norrie, J. T. Oden, and O. C. Zienkiewicz, editors, Finite elements in fluids, volume IV, Wiley, London, (1982), 46-65.
[55] Comput. Method Appl. M. 2005 4135 4195
, ,[56] Comput. Method Appl. M. 1986 305 328
,[57] Comput. Method Appl. M. 1986 341 355
, ,[58] H. T. Huynh. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. AIAA Paper 2007-4079, 2007.
[59] H. T. Huynh. A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion. AIAA Paper 2009-403, 2009.
[60] F. Iacono and G. May. Convergence acceleration for simulation of steady-state compressible flows using high-order schemes. AIAA Paper 2009-4132, 2009.
[61] F. Iacono, G. May, and Z. J. Wang. Relaxation techniques for high-order discretizations of steady compressible inviscid flows. AIAA Paper 2010-4991, 2010.
[62] Appl. Math. Comput. 1983 327 356
[63] J. Sci. Comput. 2010 348 358
[64] A. Jameson and T. J. Baker. Solution of the Euler equations for complex configurations. AIAA Paper 83-1929, 1983.
[65] A. Jameson and D. A. Caughey. How many steps are required to solve the Euler equations of steady, compressible flow: In search of a fast solution algorithm. AIAA Paper 2001-2673, 2001.
[66] A. Jameson, W. Schmidt, and E. Turkel. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA Paper 81-1259, 1981.
[67] AIAA Journal 1986 1737 1743
,[68] AIAA Journal 1987 929 935
,[69] AIAA Journal 1998 780 783
, ,[70] J. Sci. Comput. 2009 165 199
,[71] J. Comput. Phys. 2000 22 50
,[72] G. E. Karniadakis and S. J. Sherwin. Spectral/hp element methods for computational fluid dynamics. Oxford Scientific Publications, 2nd edition, 2005.
[73] J. Comput. Phys. 2008 9498 9526
,[74] Comput. Method Appl. M. 2006 3128 3144
,[75] J. Comput. Phys. 2009 7863 7882
, , ,[76] J. Comput. Phys. 1996 244 261
,[77] R. J. Leveque. Finite volume methods for hyperbolic problems. Cambridge University Press, 2002.
[78] Y. Li, S. Premasuthan, and A. Jameson. Comparison of h and p-adaptations for spectral difference methods. AIAA Paper 2010-4435, 2010.
[79] J. Comput. Phys. 2009 2847 2858
, ,[80] Comput. Fluids 2009 254 265
, ,[81] J. Comput. Phys. 2010 6874 6897
, ,[82] J. Comput. Phys. 1994 200 212
, ,[83] J. Comput. Phys. 2006 780 801
, ,[84] J. Sci. Comput. 2007 175 199
, ,[85] J. Comput. Phys. 2006 767 783
, ,[86] J. Sci. Comput. 1988 323 353
,[87] J. Comput. Phys. 2010 3664 3674
, ,[88] D. J. Mavriplis and C. R. Nastase. On the geometric conservation law for high-order discontinuous Galerkin discretizations on dynamically deforming meshes. AIAA Paper 2008-778, 2008.
[89] G. May. The spectral difference scheme as a quadrature-free discontinuous Galerkin method. Aachen Institute for Advanced Study Technical Report AICES-2008-11, 2008.
[90] G. May and A. Jameson. Efficient relaxation methods for high-order discretization of steady problems. In Adaptive high-order methods in computational fluid dynamics (advances in computational fluid dynamics). In Press.
[91] J. Comput. Phys. 2006 330 357
,[92] J. Comput. Phys. 2009 3232 3254
, ,[93] J. Comput. Phys. 2009 8841 8855
, ,[94] N. C. Nguyen, J. Peraire, and B. Cockburn. An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys., In press, 2010.
[95] J. Comput. Phys. 1997 6 17
[96] K. Ou and A. Jameson. A high-order spectral difference method for fluid-structure interaction on dynamic deforming meshes. AIAA Paper 2010-4932, 2010.
[97] K. Ou, C. Liang, and A. Jameson. A high-order spectral difference method for the Navier-Stokes equations on unstructured moving deformable grids. AIAA Paper 2010-541, 2010.
[98] K. Ou, C. Liang, S. Premasuthan, and A. Jameson. High-order spectral difference simulation of laminar compressible flow over two counter-rotating cylinders. AIAA Paper 2009-3956, 2009.
[99] J. Comput. Phys. 2010 828 850
, , ,[100] SIAM J. Sci. Comput. 2008 1806 1824
,[101] Comput. Method Appl. M. 2009 1585 1595
, ,[102] P. Persson and J. Peraire. Sub-cell shock capturing for discontinuous Galerkin methods. AIAA Paper 2006-112, 2006.
[103] SIAM J. Sci. Comput. 2008 2709 2722
,[104] P. Persson and J. Peraire. Curved mesh generation and mesh refinement using Lagrangian solid mechanics. AIAA Paper 2009-949, 2009.
[105] P. Persson, D. J. Willis, and J. Peraire. The numerical simulation of flapping wings at low Reynolds numbers. AIAA Paper 2010-724, 2010.
[106] S. Premasuthan, C. Liang, and A. Jameson. A spectral difference method for viscous compressible flows with shocks. AIAA Paper 2009-3785, June 2009.
[107] S. Premasuthan, C. Liang, and A. Jameson. Computation of flows with shocks using spectral difference scheme with artificial viscosity. AIAA Paper 2010-1449, 2010.
[108] S. Premasuthan, C. Liang, A. Jameson, and Z. J. Wang. A p-multigrid spectral difference method for viscous compressible flow using 2D quadrilateral meshes. AIAA Paper 2009-950, 2009.
[109] SIAM J. Sci. Comput. 2005 907 929
,[110] AIAA Journal 2007 1346 1356
, ,[111] W. H. Reed and T. R. Hill. T riangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos National Laboratory, New Mexico, USA, 1973.
[112] J. Comput. Phys. 1981 357 372
[113] J. Sci. Comput. 1987 389 406
,[114] Int. J. Numer. Meth. Fluids 2008 1051 1069
, ,[115] Int. J. Numer. Meth. Engng. 2008 56 83
, ,[116] Appl. Numer. Math. 2000 357 364
,[117] Int. J. Numer. Meth. Eng. 1995 3775 3802
,[118] Int. J. Numer. Meth. Eng. 2002 207 223
,[119] Contemp. Math. 1998 191 216
, ,[120] SIAM J. Sci. and Stat. Comput. 1988 1073 1084
[121] J. Comput. Phys. 1988 439 471
,[122] J. C. Strikwerda. Finite difference schemes and partial differential equations. SIAM, 2nd edition, 2004.
[123] Commun. Comput. Phys. 2007 310 333
, ,[124] Commun. Comput. Phys. 2009 760 778
, ,[125] SIAM J. Numer. Anal. 1989 30 44
[126] A. Uranga, P. Persson, M. Drela, and J. Peraire. Implicit large eddy simulation of transitional flows over airfoils and wings. AIAA Paper 2009-4131, 2009.
[127] J. Comput. Phys. 2007 616 636
, ,[128] J. Comput. Phys. 2007 877 885
, ,[129] J. Sci. Comput. 2008 162 188
, ,[130] B. van Leer. Towards the ultimate conservative difference scheme I. The quest of monotonicity. In Proceedings of the third international conference on numerical methods in fluid mechanics, Springer, (1973), 163-168.
[131] J. Comput. Phys. 1974 361 370
[132] J. Comput. Phys. 1977 263 275
[133] J. Comput. Phys. 1977 276 299
[134] J. Comput. Phys. 1979 101 136
[135] J. Comput. Phys. 1995 120 130
[136] P. E. Vincent, P. Castonguay, and A. Jameson. A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput., (2010), In press.
[137] J. Appl. Phys. 1950 232 237
,[138] J. Comput. Phys. 2002 210 251
[139] Prog. Aerosp. Sci. 2007 1 41
[140] J. Comput. Phys. 2009 8161 8186
,[141] J. Comput. Phys. 2002 665 697
,[142] J. Sci. Comput. 2004 137 157
,[143] J. Comput. Phys. 2004 716 741
, ,[144] A. Wolkov, Ch. Hirsch, and B. Leonard. Discontinuous Galerkin method on unstructured hexahedral grids for 3D Euler and Navier-Stokes equations. AIAA Paper 2007-4078, 2007.
[145] AIAA Journal 1988 1025 1026
,[146] Comput. Method Appl. M. 2007 2943 2959
, , , ,[147] Y. Zhou and Z. J. Wang. Implicit large eddy simulation of transitional flow over a SD7003 wing using high-order spectral difference method. AIAA Paper 2010-4442, 2010.
[148] J. Comput. Phys. 2008 4330 4353
, , ,[149] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The finite element method Its basis and fundamentals. Elsevier, 6th edition, 2005.
Cité par Sources :