Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 97-140.

Voir la notice de l'article provenant de la source EDP Sciences

Theoretical studies and numerical experiments suggest that unstructured high-order methods can provide solutions to otherwise intractable fluid flow problems within complex geometries. However, it remains the case that existing high-order schemes are generally less robust and more complex to implement than their low-order counterparts. These issues, in conjunction with difficulties generating high-order meshes, have limited the adoption of high-order techniques in both academia (where the use of low-order schemes remains widespread) and industry (where the use of low-order schemes is ubiquitous). In this short review, issues that have hitherto prevented the use of high-order methods amongst a non-specialist community are identified, and current efforts to overcome these issues are discussed. Attention is focused on four areas, namely the generation of unstructured high-order meshes, the development of simple and efficient time integration schemes, th e development of robust and accurate shock capturing algorithms, and finally the development of high-order methods that are intuitive and simple to implement. With regards to this final area, particular attention is focused on the recently proposed flux reconstruction approach, which allows various well known high-order schemes (such as nodal discontinuous Galerkin methods and spectral difference methods) to be cast within a single unifying framework. It should be noted that due to the experience of the authors the review is directed somewhat towards aerodynamic applications and compressible flow. However, many of the discussions have a wider applicability. Moreover, the tone of the review is intended to be generally accessible, such that an extended scientific community can gain insight into factors currently pacing the adoption of unstructured high-order methods.
DOI : 10.1051/mmnp/20116305

P. E. Vincent 1 ; A. Jameson 1

1 Department of Aeronautics and Astronautics, Stanford University, Stanford, California, USA
@article{MMNP_2011_6_3_a5,
     author = {P. E. Vincent and A. Jameson},
     title = {Facilitating the {Adoption} of {Unstructured} {High-Order} {Methods} {Amongst} a {Wider} {Community} of {Fluid} {Dynamicists}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {97--140},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2011},
     doi = {10.1051/mmnp/20116305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116305/}
}
TY  - JOUR
AU  - P. E. Vincent
AU  - A. Jameson
TI  - Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 97
EP  - 140
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116305/
DO  - 10.1051/mmnp/20116305
LA  - en
ID  - MMNP_2011_6_3_a5
ER  - 
%0 Journal Article
%A P. E. Vincent
%A A. Jameson
%T Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists
%J Mathematical modelling of natural phenomena
%D 2011
%P 97-140
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116305/
%R 10.1051/mmnp/20116305
%G en
%F MMNP_2011_6_3_a5
P. E. Vincent; A. Jameson. Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 97-140. doi : 10.1051/mmnp/20116305. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116305/

[1] R. Abgrall. On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. ICASE Report 92-74, (1992).

[2] W. Anderson, J. Thomas, D. Whitfield AIAA Journal 1988 649 654

[3] D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini SIAM J. Numer. Anal. 2001 1749 1779

[4] G. E. Barter and D. L. Darmofal. Shock capturing with higher-order PDE-based artificial viscosity. AIAA Paper 2007-3823, 2007.

[5] G. E. Barter, D. L. Darmofal J. Comput. Phys. 2010 1810 1827

[6] T. J. Barth and H. Deconinck. High-order methods for computational physics. Springer Verlag, 1999.

[7] T. J. Barth and P. O. Frederickson. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA Paper 90-0013, 1990.

[8] F. Bassi, S. Rebay J. Comput. Phys. 1997 267 279

[9] F. Bassi, S. Rebay J. Comput. Phys. 1997 251 285

[10] A. Bhagatwala, S. K. Lele J. Comput. Phys. 2009 4965 4969

[11] A. N. Brooks, T. J. R. Hughes Comput. Method. Appl. M. 1982 199 259

[12] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral methods: Fundamentals in single domains. Springer, 2006.

[13] P. Castonguay, C. Liang, and A. Jameson. Simulation of transitional flow over airfoils using the spectral difference method. AIAA Paper 2010-4626, 2010.

[14] D. Caughey AIAA Journal 1988 841 851

[15] R. F. Chen, Z. J. Wang AIAA Journal 2000 2238 2245

[16] B. Cockburn, J. Gopalakrishnan, R. Lazarov SIAM J. Numer. Anal. 2009 1319 1365

[17] B. Cockburn, S. Hou, C. W. Shu Math. Comput. 1990 545 581

[18] B. Cockburn, G. E. Karniadakis, and C. W. Shu. Discontinuous Galerkin methods: Theory, computation and applications. Springer, 2000.

[19] B. Cockburn, S. Y. Lin, C. W. Shu TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems J. Comput. Phys. 1989 90 113

[20] B. Cockburn, C. Shu Math. Comput. 1989 411 435

[21] B. Cockburn, C. W. Shu SIAM J. Numer. Anal. 1998 2440 2463

[22] B. Cockburn, C. W. Shu J. Comput. Phys. 1998 199 224

[23] B. Cockburn, C. W. Shu J. Sci. Comput. 2001 173 261

[24] A. W. Cook Phys. Fluids 2007 55 103

[25] A. W. Cook, W. H. Cabot J. Comput. Phys. 2004 594 601

[26] A. W. Cook, W. H. Cabot J. Comput. Phys. 2005 379 385

[27] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric analysis: Toward integration of CAD and FEA. Wiley, 2009.

[28] M. Delanaye and Y. Liu. uadratic reconstruction finite volume schemes on 3D arbitrary unstructured polyhedral grids. AIAA Paper 1999-3259, 1999.

[29] M. O. Deville, P. F. Fischer, and E. H. Mund. High-order methods for incompressible fluid flow. Cambridge University Press, 2002.

[30] S. Dey, R. M. O’bara, and M. S. Shephard. Curvilinear mesh generation in 3D. In Proceedings of the Eighth International Meshing Roundtable, John Wiley Sons, (1999) 407-417.

[31] V. Dolean, H. Fahs, L. Fezoui, S. Lanteri J. Comput. Phys. 2010 512 526

[32] J. Douglas and T. Dupont. Interior penalty procedures for elliptic and parabolic Galerkin methods. In Computing Methods in Applied Sciences (Second International Symposium, Versailles, 1975), Springer, (1976), 207-216.

[33] Y. Dubief, F. Delcayre J. Turbul. 2000 1 22

[34] M. Dumbser, D. S. Balsara, E. F. Toro, C. D. Munz J. Comput. Phys. 2008 8209 8253

[35] J. K. Fidkowski and D. L. Darmofal. Output-based error estimation and mesh adaptation in computational fluid dynamics: Overview and recent results. AIAA Paper 2009-1303, 2009.

[36] K. J. Fidkowski, T. A. Oliver, J. Lu, D. L. Darmofal J. Comput. Phys. 2005 92 113

[37] K. J. Fidkowski, P. L. Roe SIAM J Sci Comput 2010 261 1287

[38] O. Friedrich J. Comput. Phys. 1998 194 212

[39] M. Galbraith and M. Visbal. Implicit large eddy simulation of low Reynolds number flow past the SD7003 airfoil. AIAA Paper 2008-225, 2008.

[40] H. Gao, Z. J. Wang, Y. Liu J. Sci. Comput. 2010 323 336

[41] G. Gassner, F. Lorcher, C. D. Munz J. Sci. Comput. 2008 260 286

[42] C. Geuzaine, J. Remacle Int. J. Numer. Meth. Eng. 2009 1309 1331

[43] S. Gottlieb, C. W. Shu, E. Tadmor SIAM Review 2001 89 112

[44] T. Haga, H. Gao, and Z. J. Wang. A high-order unifying discontinuous formulation for 3D mixed grids. AIAA Paper 2010-540, 2010.

[45] T. Haga, K. Sawada, Z. J. Wang Commun. Comput. Phys. 2009 978 996

[46] A. Harten J. Comput. Phys. 1983 357 393

[47] A. Harten, B. Engquist, S. Osher, S. R. Chakravarthy J. Comput. Phys. 1987 231 303

[48] R. Hartmann Int. J. Numer. Meth. Fluids 2006 1131 1156

[49] B. T. Helenbrook, H. L. Atkins AIAA Journal 2008 894 916

[50] J. S. Hesthaven, D. Gottlieb Comput. Method Appl. M. 1999 361 381

[51] J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods - Algorithms, analysis, and applications. Springer, 2008.

[52] C. Hu, C. W. Shu J. Comput. Phys. 1999 97 127

[53] T. J. R. Hughes and A. N. Brooks. A multidimensional upwind scheme with no crosswind diffusion. In T. J. R. Hughes, editor, Finite element methods for convection dominated flows, ASME, New York, (1979), 19-35.

[54] T. J. R. Hughes and A. N. Brooks. A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the streamline upwind procedure. In R. H. Gallagher, D. H. Norrie, J. T. Oden, and O. C. Zienkiewicz, editors, Finite elements in fluids, volume IV, Wiley, London, (1982), 46-65.

[55] T. J. R. Hughes, J. A. Cottrell, Y. Bazilevs Comput. Method Appl. M. 2005 4135 4195

[56] T. J. R. Hughes, M. Mallet Comput. Method Appl. M. 1986 305 328

[57] T. J. R. Hughes, M. Mallet, A. Mizukami Comput. Method Appl. M. 1986 341 355

[58] H. T. Huynh. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. AIAA Paper 2007-4079, 2007.

[59] H. T. Huynh. A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion. AIAA Paper 2009-403, 2009.

[60] F. Iacono and G. May. Convergence acceleration for simulation of steady-state compressible flows using high-order schemes. AIAA Paper 2009-4132, 2009.

[61] F. Iacono, G. May, and Z. J. Wang. Relaxation techniques for high-order discretizations of steady compressible inviscid flows. AIAA Paper 2010-4991, 2010.

[62] A. Jameson Appl. Math. Comput. 1983 327 356

[63] A. Jameson J. Sci. Comput. 2010 348 358

[64] A. Jameson and T. J. Baker. Solution of the Euler equations for complex configurations. AIAA Paper 83-1929, 1983.

[65] A. Jameson and D. A. Caughey. How many steps are required to solve the Euler equations of steady, compressible flow: In search of a fast solution algorithm. AIAA Paper 2001-2673, 2001.

[66] A. Jameson, W. Schmidt, and E. Turkel. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA Paper 81-1259, 1981.

[67] A. Jameson, S. Yoon AIAA Journal 1986 1737 1743

[68] A. Jameson, S. Yoon AIAA Journal 1987 929 935

[69] K. D. Jones, C. M. Dohring, M. F. Platzer AIAA Journal 1998 780 783

[70] R. Kannan, Z. J. Wang J. Sci. Comput. 2009 165 199

[71] G. S. Karamanos, G. E. Karniadakis J. Comput. Phys. 2000 22 50

[72] G. E. Karniadakis and S. J. Sherwin. Spectral/hp element methods for computational fluid dynamics. Oxford Scientific Publications, 2nd edition, 2005.

[73] S. Kawai, S. K. Lele J. Comput. Phys. 2008 9498 9526

[74] R. M. Kirby, S. J. Sherwin Comput. Method Appl. M. 2006 3128 3144

[75] A. Klöckner, T. Warburton, J. Bridge, J. S. Hesthaven J. Comput. Phys. 2009 7863 7882

[76] D. A. Kopriva, J. H. Kolias J. Comput. Phys. 1996 244 261

[77] R. J. Leveque. Finite volume methods for hyperbolic problems. Cambridge University Press, 2002.

[78] Y. Li, S. Premasuthan, and A. Jameson. Comparison of h and p-adaptations for spectral difference methods. AIAA Paper 2010-4435, 2010.

[79] C. Liang, A. Jameson, Z. J. Wang J. Comput. Phys. 2009 2847 2858

[80] C. Liang, R. Kannan, Z. J. Wang Comput. Fluids 2009 254 265

[81] L. Liu, X. Li, F. Q. Hu J. Comput. Phys. 2010 6874 6897

[82] X. D. Liu, S. Osher, T. Chan J. Comput. Phys. 1994 200 212

[83] Y. Liu, M. Vinokur, Z. J. Wang J. Comput. Phys. 2006 780 801

[84] F. Lorcher, G. Gassner, C. D. Munz J. Sci. Comput. 2007 175 199

[85] H. Luo, J. D. Baum, R. Lohner J. Comput. Phys. 2006 767 783

[86] Y. Maday, R. Munoz J. Sci. Comput. 1988 323 353

[87] B. S. Mascarenhas, B. T. Helenbrook, H. L. Atkins J. Comput. Phys. 2010 3664 3674

[88] D. J. Mavriplis and C. R. Nastase. On the geometric conservation law for high-order discontinuous Galerkin discretizations on dynamically deforming meshes. AIAA Paper 2008-778, 2008.

[89] G. May. The spectral difference scheme as a quadrature-free discontinuous Galerkin method. Aachen Institute for Advanced Study Technical Report AICES-2008-11, 2008.

[90] G. May and A. Jameson. Efficient relaxation methods for high-order discretization of steady problems. In Adaptive high-order methods in computational fluid dynamics (advances in computational fluid dynamics). In Press.

[91] C. R. Nastase, D. J. Mavriplis J. Comput. Phys. 2006 330 357

[92] N. C. Nguyen, J. Peraire, B. Cockburn J. Comput. Phys. 2009 3232 3254

[93] N. C. Nguyen, J. Peraire, B. Cockburn J. Comput. Phys. 2009 8841 8855

[94] N. C. Nguyen, J. Peraire, and B. Cockburn. An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys., In press, 2010.

[95] C. F. Ollivier-Gooch J. Comput. Phys. 1997 6 17

[96] K. Ou and A. Jameson. A high-order spectral difference method for fluid-structure interaction on dynamic deforming meshes. AIAA Paper 2010-4932, 2010.

[97] K. Ou, C. Liang, and A. Jameson. A high-order spectral difference method for the Navier-Stokes equations on unstructured moving deformable grids. AIAA Paper 2010-541, 2010.

[98] K. Ou, C. Liang, S. Premasuthan, and A. Jameson. High-order spectral difference simulation of laminar compressible flow over two counter-rotating cylinders. AIAA Paper 2009-3956, 2009.

[99] M. Parsani, K. Van Den Abeele, C. Lacor, E. Turkel J. Comput. Phys. 2010 828 850

[100] J. Peraire, P. Persson SIAM J. Sci. Comput. 2008 1806 1824

[101] P. Persson, J. Bonet, J. Peraire Comput. Method Appl. M. 2009 1585 1595

[102] P. Persson and J. Peraire. Sub-cell shock capturing for discontinuous Galerkin methods. AIAA Paper 2006-112, 2006.

[103] P. Persson, J. Peraire SIAM J. Sci. Comput. 2008 2709 2722

[104] P. Persson and J. Peraire. Curved mesh generation and mesh refinement using Lagrangian solid mechanics. AIAA Paper 2009-949, 2009.

[105] P. Persson, D. J. Willis, and J. Peraire. The numerical simulation of flapping wings at low Reynolds numbers. AIAA Paper 2010-724, 2010.

[106] S. Premasuthan, C. Liang, and A. Jameson. A spectral difference method for viscous compressible flows with shocks. AIAA Paper 2009-3785, June 2009.

[107] S. Premasuthan, C. Liang, and A. Jameson. Computation of flows with shocks using spectral difference scheme with artificial viscosity. AIAA Paper 2010-1449, 2010.

[108] S. Premasuthan, C. Liang, A. Jameson, and Z. J. Wang. A p-multigrid spectral difference method for viscous compressible flow using 2D quadrilateral meshes. AIAA Paper 2009-950, 2009.

[109] J. Qiu, C. W. Shu SIAM J. Sci. Comput. 2005 907 929

[110] R. Radespiel, J. Windte, U. Scholz AIAA Journal 2007 1346 1356

[111] W. H. Reed and T. R. Hill. T riangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos National Laboratory, New Mexico, USA, 1973.

[112] P. L. Roe J. Comput. Phys. 1981 357 372

[113] E. M. Ronquist, A. T. Patera J. Sci. Comput. 1987 389 406

[114] R. Sevilla, S. Fernandez-Mendez, A. Huerta Int. J. Numer. Meth. Fluids 2008 1051 1069

[115] R. Sevilla, S. Fernandez-Mendez, A. Huerta Int. J. Numer. Meth. Engng. 2008 56 83

[116] S. J. Sherwin, M. Ainsworth Appl. Numer. Math. 2000 357 364

[117] S. J. Sherwin, G. E. Karniadakis Int. J. Numer. Meth. Eng. 1995 3775 3802

[118] S. J. Sherwin, J. Peiro Int. J. Numer. Meth. Eng. 2002 207 223

[119] S. J. Sherwin, T. C. E. Warburton, G. E. Karniadakis Contemp. Math. 1998 191 216

[120] C. W. Shu SIAM J. Sci. and Stat. Comput. 1988 1073 1084

[121] C. W. Shu, S. Osher J. Comput. Phys. 1988 439 471

[122] J. C. Strikwerda. Finite difference schemes and partial differential equations. SIAM, 2nd edition, 2004.

[123] Y. Sun, Z. J. Wang, Y. Liu Commun. Comput. Phys. 2007 310 333

[124] Y. Sun, Z. J. Wang, Y. Liu Commun. Comput. Phys. 2009 760 778

[125] E. Tadmor SIAM J. Numer. Anal. 1989 30 44

[126] A. Uranga, P. Persson, M. Drela, and J. Peraire. Implicit large eddy simulation of transitional flows over airfoils and wings. AIAA Paper 2009-4131, 2009.

[127] K. Van Den Abeele, T. Broeckhoven, C. Lacor J. Comput. Phys. 2007 616 636

[128] K. Van Den Abeele, C. Lacor, Z. J. Wang J. Comput. Phys. 2007 877 885

[129] K. Van Den Abeele, C. Lacor, Z. J. Wang J. Sci. Comput. 2008 162 188

[130] B. van Leer. Towards the ultimate conservative difference scheme I. The quest of monotonicity. In Proceedings of the third international conference on numerical methods in fluid mechanics, Springer, (1973), 163-168.

[131] B. Van Leer J. Comput. Phys. 1974 361 370

[132] B. Van Leer J. Comput. Phys. 1977 263 275

[133] B. Van Leer J. Comput. Phys. 1977 276 299

[134] B. Van Leer J. Comput. Phys. 1979 101 136

[135] V. Venkatakrishnan J. Comput. Phys. 1995 120 130

[136] P. E. Vincent, P. Castonguay, and A. Jameson. A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput., (2010), In press.

[137] J. Von Neumann, R. D. Richtmyer J. Appl. Phys. 1950 232 237

[138] Z. J. Wang J. Comput. Phys. 2002 210 251

[139] Z. J. Wang Prog. Aerosp. Sci. 2007 1 41

[140] Z. J. Wang, H. Gao J. Comput. Phys. 2009 8161 8186

[141] Z. J. Wang, Y. Liu J. Comput. Phys. 2002 665 697

[142] Z. J. Wang, Y. Liu J. Sci. Comput. 2004 137 157

[143] Z. J. Wang, L. Zhang, Y. Liu J. Comput. Phys. 2004 716 741

[144] A. Wolkov, Ch. Hirsch, and B. Leonard. Discontinuous Galerkin method on unstructured hexahedral grids for 3D Euler and Navier-Stokes equations. AIAA Paper 2007-4078, 2007.

[145] S. Yoon, A. Jameson AIAA Journal 1988 1025 1026

[146] Y. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, T. J. R. Hughes Comput. Method Appl. M. 2007 2943 2959

[147] Y. Zhou and Z. J. Wang. Implicit large eddy simulation of transitional flow over a SD7003 wing using high-order spectral difference method. AIAA Paper 2010-4442, 2010.

[148] J. Zhu, J. Qiu, C. W. Shu, M. Dumbser J. Comput. Phys. 2008 4330 4353

[149] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The finite element method Its basis and fundamentals. Elsevier, 6th edition, 2005.

Cité par Sources :