Voir la notice de l'article provenant de la source EDP Sciences
C. D. Cantwell 1 ; S. J. Sherwin 2 ; R. M. Kirby 3 ; P. H. J. Kelly 4
@article{MMNP_2011_6_3_a4, author = {C. D. Cantwell and S. J. Sherwin and R. M. Kirby and P. H. J. Kelly}, title = {From h to p {Efficiently:} {Selecting} the {Optimal} {Spectral/hp} {Discretisation} in {Three} {Dimensions}}, journal = {Mathematical modelling of natural phenomena}, pages = {84--96}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2011}, doi = {10.1051/mmnp/20116304}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116304/} }
TY - JOUR AU - C. D. Cantwell AU - S. J. Sherwin AU - R. M. Kirby AU - P. H. J. Kelly TI - From h to p Efficiently: Selecting the Optimal Spectral/hp Discretisation in Three Dimensions JO - Mathematical modelling of natural phenomena PY - 2011 SP - 84 EP - 96 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116304/ DO - 10.1051/mmnp/20116304 LA - en ID - MMNP_2011_6_3_a4 ER -
%0 Journal Article %A C. D. Cantwell %A S. J. Sherwin %A R. M. Kirby %A P. H. J. Kelly %T From h to p Efficiently: Selecting the Optimal Spectral/hp Discretisation in Three Dimensions %J Mathematical modelling of natural phenomena %D 2011 %P 84-96 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116304/ %R 10.1051/mmnp/20116304 %G en %F MMNP_2011_6_3_a4
C. D. Cantwell; S. J. Sherwin; R. M. Kirby; P. H. J. Kelly. From h to p Efficiently: Selecting the Optimal Spectral/hp Discretisation in Three Dimensions. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 84-96. doi : 10.1051/mmnp/20116304. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116304/
[1] J. Comput. Phys. 2009 6514 6535
, , , ,[2] Computers and Fluids 2011 23 28
, , ,[3] M. O. Deville, P. F. Fischer, E. H. Mund. High-order methods for incompressible fluid flow. Cambridge University Press, Cambridge, 2002.
[4] J. Sci. Comp. 1991 345 390
[5] D. Gottlieb, S. A. Orszag. Numerical analysis of spectral methods: theory and applications. Society for Industrial Mathematics, 1977.
[6] J. Comput. Phys. 2002 186 221
,[7] T. J. R. Hughes. The finite element method. Prentice-Hall, New Jersey, 1987.
[8] G. E. Karniadakis and S. J. Sherwin. Spectral/hp element methods for computational fluid dynamics. Oxford University Press, Oxford, second edition edition, 2005.
[9] U. Lee. Spectral element method in structural dynamics. Wiley, 2009.
[10] S. A. Orszag. Spectral methods for problems in complex geometries. Advances in computer methods for partial differential equations- III, (1979), 148-157.
[11] J. Comput. Phys. 1984 468 488
[12] J. Comput. Phys. 1996 14 45
,[13] Finite Elements in Analysis and Design 1997 109 119
[14] B. F. Smith, P. Bjorstad, W. Gropp. Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, 2004.
[15] J. Comput. Phys. 2010 5161 5181
, ,[16] O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu. The finite element method: its basis and fundamentals. Elsevier Butterworth Heinemann, 2005.
Cité par Sources :