From h to p Efficiently: Selecting the Optimal Spectral/hp Discretisation in Three Dimensions
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 84-96.

Voir la notice de l'article provenant de la source EDP Sciences

There is a growing interest in high-order finite and spectral/hp element methods using continuous and discontinuous Galerkin formulations. In this paper we investigate the effect of h- and p-type refinement on the relationship between runtime performance and solution accuracy. The broad spectrum of possible domain discretisations makes establishing a performance-optimal selection non-trivial. Through comparing the runtime of different implementations for evaluating operators over the space of discretisations with a desired solution tolerance, we demonstrate how the optimal discretisation and operator implementation may be selected for a specified problem. Furthermore, this demonstrates the need for codes to support both low- and high-order discretisations.
DOI : 10.1051/mmnp/20116304

C. D. Cantwell 1 ; S. J. Sherwin 2 ; R. M. Kirby 3 ; P. H. J. Kelly 4

1 Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
2 Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK
3 School of Computing, University of Utah, Salt Lake City, Utah, USA
4 Department of Computing, Imperial College London, London, SW7 2AZ, UK
@article{MMNP_2011_6_3_a4,
     author = {C. D. Cantwell and S. J. Sherwin and R. M. Kirby and P. H. J. Kelly},
     title = {From h to p {Efficiently:} {Selecting} the {Optimal} {Spectral/hp} {Discretisation} in {Three} {Dimensions}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {84--96},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2011},
     doi = {10.1051/mmnp/20116304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116304/}
}
TY  - JOUR
AU  - C. D. Cantwell
AU  - S. J. Sherwin
AU  - R. M. Kirby
AU  - P. H. J. Kelly
TI  - From h to p Efficiently: Selecting the Optimal Spectral/hp Discretisation in Three Dimensions
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 84
EP  - 96
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116304/
DO  - 10.1051/mmnp/20116304
LA  - en
ID  - MMNP_2011_6_3_a4
ER  - 
%0 Journal Article
%A C. D. Cantwell
%A S. J. Sherwin
%A R. M. Kirby
%A P. H. J. Kelly
%T From h to p Efficiently: Selecting the Optimal Spectral/hp Discretisation in Three Dimensions
%J Mathematical modelling of natural phenomena
%D 2011
%P 84-96
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116304/
%R 10.1051/mmnp/20116304
%G en
%F MMNP_2011_6_3_a4
C. D. Cantwell; S. J. Sherwin; R. M. Kirby; P. H. J. Kelly. From h to p Efficiently: Selecting the Optimal Spectral/hp Discretisation in Three Dimensions. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 84-96. doi : 10.1051/mmnp/20116304. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116304/

[1] P. E. Bernard, J. F. Remacle, R. Comblen, V. Legat, K. Hillewaert J. Comput. Phys. 2009 6514 6535

[2] C. D. Cantwell, S. J. Sherwin, R. M. Kirby, P. H. J. Kelly Computers and Fluids 2011 23 28

[3] M. O. Deville, P. F. Fischer, E. H. Mund. High-order methods for incompressible fluid flow. Cambridge University Press, Cambridge, 2002.

[4] M. Dubiner J. Sci. Comp. 1991 345 390

[5] D. Gottlieb, S. A. Orszag. Numerical analysis of spectral methods: theory and applications. Society for Industrial Mathematics, 1977.

[6] J. S. Hesthaven, T. Warburton J. Comput. Phys. 2002 186 221

[7] T. J. R. Hughes. The finite element method. Prentice-Hall, New Jersey, 1987.

[8] G. E. Karniadakis and S. J. Sherwin. Spectral/hp element methods for computational fluid dynamics. Oxford University Press, Oxford, second edition edition, 2005.

[9] U. Lee. Spectral element method in structural dynamics. Wiley, 2009.

[10] S. A. Orszag. Spectral methods for problems in complex geometries. Advances in computer methods for partial differential equations- III, (1979), 148-157.

[11] A. T. Patera J. Comput. Phys. 1984 468 488

[12] S. J. Sherwin, G. E. Karniadakis J. Comput. Phys. 1996 14 45

[13] S. J. Sherwin Finite Elements in Analysis and Design 1997 109 119

[14] B. F. Smith, P. Bjorstad, W. Gropp. Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, 2004.

[15] P. E. J. Vos, S. J. Sherwin, M. Kirby J. Comput. Phys. 2010 5161 5181

[16] O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu. The finite element method: its basis and fundamentals. Elsevier Butterworth Heinemann, 2005.

Cité par Sources :