Voir la notice de l'article provenant de la source EDP Sciences
A. Klöckner 1 ; T. Warburton 2 ; J. S. Hesthaven 3
@article{MMNP_2011_6_3_a3, author = {A. Kl\"ockner and T. Warburton and J. S. Hesthaven}, title = {Viscous {Shock} {Capturing} in a {Time-Explicit} {Discontinuous} {Galerkin} {Method}}, journal = {Mathematical modelling of natural phenomena}, pages = {57--83}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2011}, doi = {10.1051/mmnp/20116303}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116303/} }
TY - JOUR AU - A. Klöckner AU - T. Warburton AU - J. S. Hesthaven TI - Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method JO - Mathematical modelling of natural phenomena PY - 2011 SP - 57 EP - 83 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116303/ DO - 10.1051/mmnp/20116303 LA - en ID - MMNP_2011_6_3_a3 ER -
%0 Journal Article %A A. Klöckner %A T. Warburton %A J. S. Hesthaven %T Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method %J Mathematical modelling of natural phenomena %D 2011 %P 57-83 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116303/ %R 10.1051/mmnp/20116303 %G en %F MMNP_2011_6_3_a3
A. Klöckner; T. Warburton; J. S. Hesthaven. Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 57-83. doi : 10.1051/mmnp/20116303. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116303/
[1] SIAM Journal on Numerical Analysis 2002 1749 1779
, , ,[2] Journal of Computational Physics 1997 25 40
,[3] ASC Flash Center. Flash user’s guide, version 3.2, Tech. report, University of Chicago, 2009.
[4] Journal of Computational Physics 2010 1810 1827
,[5] F. Bassi and S. Rebay. Accurate 2D Euler computations by means of a high order discontinuous finite element method. XIVth ICN MFD (Bangalore, India), Springer, 1994.
[6] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini. A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics (Antwerpen, Belgium) (R. Decuypere and G. Dibelius, eds.), Technologisch Instituut, (1997), 99-108.
[7] N. Bell, M. Garland. Efficient sparse matrix-vector multiplication on CUDA. NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, 2008.
[8] Applied Mathematics Letters 1989 321 325
,[9] P. Borwein, T. Erdelyi. Polynomials and polynomial inequalities. first ed., Springer, 1995.
[10] Journal of Computational Physics 2001 111 150
, ,[11] BIT Numerical Mathematics 2007 715 733
[12] SIAM Journal on Numerical Analysis 2008 1364 1398
,[13] Mathematics of Computation 1989 411 435
,[14] Mathematics of Computation 1990 545 581
, ,[15] Journal of Computational Physics 1989 90 113
, ,[16] Journal of Computational Physics 1998 199 224
,[17] P. J. Davis. Interpolation and approximation. Blaisdell Pub. Co., 1963.
[18] Mathematics and Computers in Simulation 2003 333 346
, ,[19] Journal of Computational and Applied Mathematics 1980 19 26
,[20] Journal of Scientific Computing 1991 345 390
[21] SIAM Journal on Numerical Analysis 1999 853 863
,[22] IMA Journal of Numerical Analysis 2009 235
, ,[23] Journal of Computational Physics 2007 208 221
,[24] Journal of Parallel and Distributed Computing 1997 139 152
, , , , ,[25] SIAM Review 1997 644 668
,[26] S. Gottlieb, D. Ketcheson, C.-W. Shu. Strong stability preserving time discretizations. World Scientific, 2011.
[27] Computers Fluids 1981 223 253
,[28] Comptes Rendus Mathematique 2008 801 806
,[29] M. Harris. Optimizing parallel reduction in CUDA. Tech. report, Nvidia Corporation, Santa Clara, CA, 2007.
[30] International Journal for Numerical Methods in Fluids 2006 1131 1156
[31] J. S. Hesthaven, T. Warburton. Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Springer, 2007.
[32] Computer Methods in Applied Mechanics and Engineering 2005 229 243
,[33] Math. Models Methods Appl. Sci. 1995 367 386
, ,[34] Computer Methods in Applied Mechanics and Engineering 2008 475 494
,[35] Computer Methods in Applied Mechanics and Engineering 2006 3128 3144
,[36] J. Comp. Phys. 2009 7863 7882
, , ,[37] T. Koornwinder. Two-variable analogues of the classical orthogonal polynomials. Theory and Applications of Special Functions (1975), 435-495.
[38] SIAM Journal on Numerical Analysis 2001 1986 1998
, ,[39] Journal of Computational Physics 2007 879 896
[40] D. Kuzmin, R. Löhner, S. Turek. Flux-corrected transport. Springer, 2005.
[41] Journal of Computational Physics 1967 154 177
[42] Communications on Pure and Applied Mathematics 1954 159 193
[43] P. Lesaint, P. A. Raviart. On a finite element method for solving the neutron transport equation. Mathematical aspects of finite elements in partial differential equations, (1974), 89-123.
[44] J. Comp. Phys. 2008 5649 5670
, ,[45] Computer Methods in Applied Mechanics and Engineering 1994 77 86
[46] P. Persson, J. Peraire. Sub-cell shock capturing for discontinuous Galerkin methods. Proc. of the 44th AIAA Aerospace Sciences Meeting and Exhibit, 112 (2006).
[47] Int. J. Num. Anal. Mod. 2009 533 561
,[48] W. H. Reed, T. R. Hill. Triangular mesh methods for the neutron transport equation. Tech. report, Los Alamos Scientific Laboratory, Los Alamos, 1973.
[49] Journal of Computational Physics 2010 221 232
[50] Journal of Computational Physics 1989 32 78
,[51] SIAM Journal on Scientific and Statistical Computing 1988 1073 1086
[52] J. W. Slater, J. C. Dudek, K. E. Tatum, et al. The NPARC alliance verification and validation archive. 2009.
[53] Journal of Computational Physics 1978 1 31
[54] J. M. Stone. Athena test archive. 2009.
[55] SIAM Journal on Numerical Analysis 1989 30 44
[56] International Journal of Numerical Analysis and Modeling 2005 163 178
,[57] Journal of Applied Physics 1950 232 237
,[58] J. Eng. Math. 2006 247 262
[59] SIAM J. Num. Anal. 2008 3151 3180
,[60] Computer Methods in Applied Mechanics and Engineering 1999 343 359
, , , ,[61] Journal of Computational Physics 1984 115 173
,[62] Z. Xu, J. Xu, C.-W. Shu. A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws. Tech. Report 2010-14, Scientific Computing Group, Brown University, Providence, RI, USA, 2010.
[63] Journal of Computational Physics 2009 2194 2212
, ,[64] Journal of Computational Physics 2003 159 179
,Cité par Sources :