Voir la notice de l'article provenant de la source EDP Sciences
T. Haga 1 ; H. Gao 1 ; Z. J. Wang 1
@article{MMNP_2011_6_3_a2, author = {T. Haga and H. Gao and Z. J. Wang}, title = {A {High-Order} {Unifying} {Discontinuous} {Formulation} for the {Navier-Stokes} {Equations} on {3D} {Mixed} {Grids}}, journal = {Mathematical modelling of natural phenomena}, pages = {28--56}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2011}, doi = {10.1051/mmnp/20116302}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116302/} }
TY - JOUR AU - T. Haga AU - H. Gao AU - Z. J. Wang TI - A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids JO - Mathematical modelling of natural phenomena PY - 2011 SP - 28 EP - 56 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116302/ DO - 10.1051/mmnp/20116302 LA - en ID - MMNP_2011_6_3_a2 ER -
%0 Journal Article %A T. Haga %A H. Gao %A Z. J. Wang %T A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids %J Mathematical modelling of natural phenomena %D 2011 %P 28-56 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116302/ %R 10.1051/mmnp/20116302 %G en %F MMNP_2011_6_3_a2
T. Haga; H. Gao; Z. J. Wang. A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 28-56. doi : 10.1051/mmnp/20116302. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116302/
[1] J. Comput. Phys. 1997 267 279
,[2] F. Bassi, S. Rebay. GMRES discontinuous Galerkin solution of the compressible Navier- Stokes equations. In B. Cockburn, G.E. Karniadakis, and C. W. Shu, editors, Discontinuous Galerkin Methods: Theory, Computations and Applications, volume 11 of Lecture Note in Computational Science and Engineering. Springer, 2000.
[3] Comput. Methods Appl. Mech. Eng. 1995 405 417
,[4] J. Comput. Phys. 1989 90 113
, ,[5] Math. Comput. 1989 411 435
,[6] SIAM J. Numer. Anal. 1998 2440 2463
,[7] J. Comput. Phys. 1998 199 224
,[8] J. Comput. Phys. 2005 92 113
, , ,[9] H. Gao, Z. J. Wang. A high-order lifting collocation penalty formulation for the Navier- Stokes equations on 2D mixed grids. AIAA Paper 2009-3784, 2009.
[10] J. Comput. Phys. 2009 1573 1590
, , ,[11] Math. Sbornik 1959 271 306
[12] T. Haga, M. Furudate, K. Sawada. RANS simulation using high-order spectral volume method on unstructured tetrahedral grids. AIAA Paper 2009–404, 2009.
[13] Communications in Computational Physics 2009 978 996
, ,[14] J. Comput. Phys. 2008 1620 1642
, ,[15] SIAM J. Numer. Anal. 1998 655 676
[16] H. T. Huynh. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. AIAA Paper 2007–4079, 2007.
[17] H. T. Huynh. A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion. AIAA Paper 2009–403, 2009.
[18] Int. J. Comput. Fluid Dyn. 1994 171 218
[19] J. Fluid Mech. 1999 19 70
,[20] J. Comput. Phys. 1996 244 261
,[21] J. Comput. Phys. 2006 137 170
[22] Y. Liu, M. Vinokur, and Z. J. Wang. Discontinuous spectral difference method for conservation laws on unstructured grids. In Proceedings of the Third International Conference on Computational Fluid Dynamics, Toronto, Canada, July 2004.
[23] J. Comput. Phys. 2006 780 801
, ,[24] J. Comput. Phys. 2006 454 472
, ,[25] J. Comput. Phys. 2008 8875 8893
, ,[26] J. Comput. Phys. 1998 141 165
[27] G. May, A. Jameson. A spectral difference method for the Euler and Navier-Stokes equations. AIAA Paper 2006–304, 2006.
[28] J. Comput. Phys. 2006 330 357
,[29] SIAM J. Numer. Anal. 1984 217 235
[30] W. H. Reed, T. R. Hill. Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory Report LA-UR-73-479, 1973.
[31] J. Comput. Phys. 1981 357 372
[32] J. Comput. Math. Phys. 1961 267 279
[33] Int. J. Num. Meth. Eng. 1995 3775 3802
,[34] SIAM Journal on Scientific and Statistical Computing 1988 1073 1084
[35] C. W. Shu. Essentially non-oscillatory and weighted and non-oscillatory schemes for hyperbolic conservation laws. In B. Cockburn, C. Johnson, C.-W. Shu, and E. Tadmor, editors, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, volume 1697 of Lecture Note in Mathematics. Springer, 1998.
[36] Communications in Computational Physics 2007 310 333
, ,[37] J. Phys. Soc. Japan 1956 1104 1108
[38] J. Fluid Mech. 2000 45 73
,[39] J. Comput. Phys. 2007 1007 1026
,[40] J. Sci. Comput. 2008 162 188
, ,[41] J. Comput. Phys. 1979 110 136
[42] B. Van Leer, S. Nomura. Discontinuous Galerkin for diffusion. AIAA Paper 2005–5108, 2005.
[43] J. Comput. Phys. 2002 210 251
[44] Progress in Aerospace Sciences 2007 1 41
[45] J. Comput. Phys. 2009 8161 8186
,[46] J. Comput. Phys. 2002 665 697
,[47] Journal of Scientific Computing 2004 137 157
,[48] J. Comput. Phys. 2004 716 741
, ,[49] J. Eng. Math. 2006 247 262
[50] O. C. Zienkiewicz, R. L. Taylor. The Finite Element Method The Basics, vol. 1. Butterworth-Heinemann, Oxford, England, 2000.
Cité par Sources :