A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 28-56.

Voir la notice de l'article provenant de la source EDP Sciences

The newly developed unifying discontinuous formulation named the correction procedure via reconstruction (CPR) for conservation laws is extended to solve the Navier-Stokes equations for 3D mixed grids. In the current development, tetrahedrons and triangular prisms are considered. The CPR method can unify several popular high order methods including the discontinuous Galerkin and the spectral volume methods into a more efficient differential form. By selecting the solution points to coincide with the flux points, solution reconstruction can be completely avoided. Accuracy studies confirmed that the optimal order of accuracy can be achieved with the method. Several benchmark test cases are computed by solving the Euler and compressible Navier-Stokes equations to demonstrate its performance.
DOI : 10.1051/mmnp/20116302

T. Haga 1 ; H. Gao 1 ; Z. J. Wang 1

1 Department of Aerospace Engineering and CFD Center, Iowa State University, 50011 Ames, USA
@article{MMNP_2011_6_3_a2,
     author = {T. Haga and H. Gao and Z. J. Wang},
     title = {A {High-Order} {Unifying} {Discontinuous} {Formulation} for the {Navier-Stokes} {Equations} on {3D} {Mixed} {Grids}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {28--56},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2011},
     doi = {10.1051/mmnp/20116302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116302/}
}
TY  - JOUR
AU  - T. Haga
AU  - H. Gao
AU  - Z. J. Wang
TI  - A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 28
EP  - 56
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116302/
DO  - 10.1051/mmnp/20116302
LA  - en
ID  - MMNP_2011_6_3_a2
ER  - 
%0 Journal Article
%A T. Haga
%A H. Gao
%A Z. J. Wang
%T A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids
%J Mathematical modelling of natural phenomena
%D 2011
%P 28-56
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116302/
%R 10.1051/mmnp/20116302
%G en
%F MMNP_2011_6_3_a2
T. Haga; H. Gao; Z. J. Wang. A High-Order Unifying Discontinuous Formulation for the Navier-Stokes Equations on 3D Mixed Grids. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 3, pp. 28-56. doi : 10.1051/mmnp/20116302. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116302/

[1] F. Bassi, S. Rebay J. Comput. Phys. 1997 267 279

[2] F. Bassi, S. Rebay. GMRES discontinuous Galerkin solution of the compressible Navier- Stokes equations. In B. Cockburn, G.E. Karniadakis, and C. W. Shu, editors, Discontinuous Galerkin Methods: Theory, Computations and Applications, volume 11 of Lecture Note in Computational Science and Engineering. Springer, 2000.

[3] Q. Chen, I. Babuska Comput. Methods Appl. Mech. Eng. 1995 405 417

[4] B. Cockburn, S. Y. Lin, C. W. Shu J. Comput. Phys. 1989 90 113

[5] B. Cockburn, C. W. Shu Math. Comput. 1989 411 435

[6] B. Cockburn, C. W. Shu SIAM J. Numer. Anal. 1998 2440 2463

[7] B. Cockburn, C. W. Shu J. Comput. Phys. 1998 199 224

[8] K. Fidkowski, T. A. Oliver, J. Lu, D. Darmofal J. Comput. Phys. 2005 92 113

[9] H. Gao, Z. J. Wang. A high-order lifting collocation penalty formulation for the Navier- Stokes equations on 2D mixed grids. AIAA Paper 2009-3784, 2009.

[10] G. J. Gassner, F. Lorcher, C-D. Munz, J. S. Hesthaven J. Comput. Phys. 2009 1573 1590

[11] S. K. Godunov Math. Sbornik 1959 271 306

[12] T. Haga, M. Furudate, K. Sawada. RANS simulation using high-order spectral volume method on unstructured tetrahedral grids. AIAA Paper 2009–404, 2009.

[13] T. Haga, K. Sawada, Z. J. Wang Communications in Computational Physics 2009 978 996

[14] R. Harris, Z. J. Wang, Y. Liu J. Comput. Phys. 2008 1620 1642

[15] J. S. Hesthaven SIAM J. Numer. Anal. 1998 655 676

[16] H. T. Huynh. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. AIAA Paper 2007–4079, 2007.

[17] H. T. Huynh. A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion. AIAA Paper 2009–403, 2009.

[18] A. Jameson Int. J. Comput. Fluid Dyn. 1994 171 218

[19] T. A. Johnson, V. C. Patel J. Fluid Mech. 1999 19 70

[20] D. A. Kopriva, J. H. Kolias J. Comput. Phys. 1996 244 261

[21] M. S. Liou J. Comput. Phys. 2006 137 170

[22] Y. Liu, M. Vinokur, and Z. J. Wang. Discontinuous spectral difference method for conservation laws on unstructured grids. In Proceedings of the Third International Conference on Computational Fluid Dynamics, Toronto, Canada, July 2004.

[23] Y. Liu, M. Vinokur, Z. J. Wang J. Comput. Phys. 2006 780 801

[24] Y. Liu, M. Vinokur, Z. J. Wang J. Comput. Phys. 2006 454 472

[25] H. Luo, J. D. Baum, R. Lohner J. Comput. Phys. 2008 8875 8893

[26] D. J. Mavriplis J. Comput. Phys. 1998 141 165

[27] G. May, A. Jameson. A spectral difference method for the Euler and Navier-Stokes equations. AIAA Paper 2006–304, 2006.

[28] C. R. Nastase, D. J. Mavriplis J. Comput. Phys. 2006 330 357

[29] S. Osher SIAM J. Numer. Anal. 1984 217 235

[30] W. H. Reed, T. R. Hill. Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory Report LA-UR-73-479, 1973.

[31] P. L. Roe J. Comput. Phys. 1981 357 372

[32] V. V. Rusanov J. Comput. Math. Phys. 1961 267 279

[33] S. J. Sherwin, G. E. Karniadaks Int. J. Num. Meth. Eng. 1995 3775 3802

[34] C. W. Shu SIAM Journal on Scientific and Statistical Computing 1988 1073 1084

[35] C. W. Shu. Essentially non-oscillatory and weighted and non-oscillatory schemes for hyperbolic conservation laws. In B. Cockburn, C. Johnson, C.-W. Shu, and E. Tadmor, editors, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, volume 1697 of Lecture Note in Mathematics. Springer, 1998.

[36] Y. Sun, Z. J. Wang, Y. Liu Communications in Computational Physics 2007 310 333

[37] S. Taneda J. Phys. Soc. Japan 1956 1104 1108

[38] A. G. Tomboulides, S. A. Orzag J. Fluid Mech. 2000 45 73

[39] K. Van Den Abeele, C. Lacor J. Comput. Phys. 2007 1007 1026

[40] K. Van Den Abeele, C. Lacor, Z. J. Wang J. Sci. Comput. 2008 162 188

[41] B. Van Leer J. Comput. Phys. 1979 110 136

[42] B. Van Leer, S. Nomura. Discontinuous Galerkin for diffusion. AIAA Paper 2005–5108, 2005.

[43] Z. J. Wang J. Comput. Phys. 2002 210 251

[44] Z. J. Wang Progress in Aerospace Sciences 2007 1 41

[45] Z. J. Wang, H. Gao J. Comput. Phys. 2009 8161 8186

[46] Z. J. Wang, Y. Liu J. Comput. Phys. 2002 665 697

[47] Z. J. Wang, Y. Liu Journal of Scientific Computing 2004 137 157

[48] Z. J. Wang, L. Zhang, Y. Liu J. Comput. Phys. 2004 716 741

[49] T. Warburton J. Eng. Math. 2006 247 262

[50] O. C. Zienkiewicz, R. L. Taylor. The Finite Element Method The Basics, vol. 1. Butterworth-Heinemann, Oxford, England, 2000.

Cité par Sources :