The Geometric and Dynamic Essence of Phyllotaxis
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 2, pp. 173-186.

Voir la notice de l'article provenant de la source EDP Sciences

We present a dynamic geometric model of phyllotaxis based on two postulates, primordia formation and meristem expansion. We find that Fibonacci, Lucas, bijugate and multijugate are all variations of the same unifying phenomenon and that the difference lies in the changes in position of initial primordia. We explore the set of all initial positions and color-code its points depending on the phyllotactic pattern that arises.
DOI : 10.1051/mmnp/20116207

P. Atela 1

1 Department of Mathematics, Smith College, Northampton, MA 01063, USA
@article{MMNP_2011_6_2_a6,
     author = {P. Atela},
     title = {The {Geometric} and {Dynamic} {Essence} of {Phyllotaxis}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {173--186},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2011},
     doi = {10.1051/mmnp/20116207},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116207/}
}
TY  - JOUR
AU  - P. Atela
TI  - The Geometric and Dynamic Essence of Phyllotaxis
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 173
EP  - 186
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116207/
DO  - 10.1051/mmnp/20116207
LA  - en
ID  - MMNP_2011_6_2_a6
ER  - 
%0 Journal Article
%A P. Atela
%T The Geometric and Dynamic Essence of Phyllotaxis
%J Mathematical modelling of natural phenomena
%D 2011
%P 173-186
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116207/
%R 10.1051/mmnp/20116207
%G en
%F MMNP_2011_6_2_a6
P. Atela. The Geometric and Dynamic Essence of Phyllotaxis. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 2, pp. 173-186. doi : 10.1051/mmnp/20116207. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116207/

[1] P. Atela, C. Gole, S. Hotton A dynamical system for plant pattern formation: a rigorous analysis J. Nonlinear Sci. 2002 641 676

[2] S. Douady, Y. Couder Phyllotaxis as a physical self organized growth process Phys. Rev. Lett. 1992 2098 2101

[3] S. Douady, Y. Couder Phyllotaxis as a Self Organizing Iterative Process, Parts I, II and III J. Theor. Biol. 1996 255 312

[4] W. Hofmeister Allgemeine Morphologie der Gewachse, in Handbuch der Physiologishcen Botanik Engelmann, Leipzig 1868 405 664

[5] S. Hotton, V. Johnson, J. Wilbarger, K. Zwieniecki, P. Atela, C. Gole, J. Dumais The possible and the actual in phyllotaxis: Bridging the gap between empirical observations and iterative models Journal of Plant Growth Regulation 2006 313 323

[6] R. V. Jean. Phyllotaxis, a Systemic Study in Plant Morphogenesis. Cambridge University Press, 1994.

[7] R.V. Jean, D. Barab, editors. Symmetry in Plants. World Scientific, Singapore, 1994.

[8] L.S. Levitov Energetic Approach to Phyllotaxis Europhys. Lett. 1991 533 539

[9] M. Snow, R. Snow Minimum Areas and Leaf Determination Proc. Roy. Soc. 1952 545 566

[10] G. van Iterson. Mathematische und Microscopisch-Anatamische Studien über Blattstellungen, nebst Betrshungen über den Schalenbau der miliolinen. G.-Fischer-Verlag, Jena, 1907.

Cité par Sources :