Patterns and Waves Generated by a Subcritical Instability in Systems with a Conservation Law under the Action of a Global Feedback Control
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 188-208.

Voir la notice de l'article provenant de la source EDP Sciences

A global feedback control of a system that exhibits a subcritical monotonic instability at a non-zero wavenumber (short-wave, or Turing instability) in the presence of a zero mode is investigated using a Ginzburg-Landau equation coupled to an equation for the zero mode. The method based on a variational principle is applied for the derivation of a low-dimensional evolution model. In the framework of this model the investigation of the system’s dynamics and the linear and nonlinear stability analysis are carried out. The obtained results are compared with the results of direct numerical simulations of the original problem.
DOI : 10.1051/mmnp/20116110

Y. Kanevsky 1 ; A.A. Nepomnyashchy 1

1 Department of Mathematics, Technion – Israel Institute of Technology, Haifa 32000, Israel
@article{MMNP_2011_6_1_a10,
     author = {Y. Kanevsky and A.A. Nepomnyashchy},
     title = {Patterns and {Waves} {Generated} by a {Subcritical} {Instability} in {Systems} with a {Conservation} {Law} under the {Action} of a {Global} {Feedback} {Control}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {188--208},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2011},
     doi = {10.1051/mmnp/20116110},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116110/}
}
TY  - JOUR
AU  - Y. Kanevsky
AU  - A.A. Nepomnyashchy
TI  - Patterns and Waves Generated by a Subcritical Instability in Systems with a Conservation Law under the Action of a Global Feedback Control
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 188
EP  - 208
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116110/
DO  - 10.1051/mmnp/20116110
LA  - en
ID  - MMNP_2011_6_1_a10
ER  - 
%0 Journal Article
%A Y. Kanevsky
%A A.A. Nepomnyashchy
%T Patterns and Waves Generated by a Subcritical Instability in Systems with a Conservation Law under the Action of a Global Feedback Control
%J Mathematical modelling of natural phenomena
%D 2011
%P 188-208
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116110/
%R 10.1051/mmnp/20116110
%G en
%F MMNP_2011_6_1_a10
Y. Kanevsky; A.A. Nepomnyashchy. Patterns and Waves Generated by a Subcritical Instability in Systems with a Conservation Law under the Action of a Global Feedback Control. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 188-208. doi : 10.1051/mmnp/20116110. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116110/

[1] D. Casini, G. D’Alessandro, A. Politi Soft turbulence in multimode lasers Phys. Rev. A 1997 751 760

[2] S. Chávez Cerda, S.B. Cavalcanti, J.M. Hickmann A variational approach of nonlinear dissipative pulse propagation Eur. Phys. J. D 1998 313 316

[3] P. Coullet, S. Fauve Propagative phase dynamics for systems with Galilean invariance Phys. Rev. Lett. 1985 2857 2859

[4] P. Coullet, G. Iooss Instabilities of one-dimensional cellular patterns Phys. Rev. Lett. 1990 866 869

[5] S.M. Cox, P.C. Matthews Instability and localisation of patterns due to a conserved quantity Physica D 2003 196 219

[6] A.A. Golovin, S.H. Davis, P.W. Voorhees Self-organization of quantum dots in epitaxially strained solid films Phys. Rev. E 2003

[7] A.A. Golovin, Y. Kanevsky, A.A. Nepomnyashchy Feedback control of subcritical Turing instability with zero mode Phys. Rev. E 2009

[8] A.A. Golovin, A.A. Nepomnyashchy Feedback control of subcritical oscillatory instabilities Phys. Rev. E 2006

[9] A.A. Golovin, A.A. Nepomnyashchy, L.M. Pismen Interaction between short-scale Marangoni convection and long-scale deformational instability Phys. Fluids 1994 34 47

[10] A.A. Golovin, A.A. Nepomnyashchy, L.M. Pismen Nonlinear evolution and secondary instabilities of Marangoni convection in a liquid-gas system with deformable interface J. Fluid Mech. 1997 317 341

[11] Y. Kanevsky, A.A. Nepomnyashchy Stability and nonlinear dynamics of solitary waves generated by subcritical oscillatory instability under the action of feedback control Phys. Rev. E 2007

[12] Y. Kanevsky, A.A. Nepomnyashchy. Dynamics of solitary waves generated by subcritical instabiity under the action of delayed feedback control. Physica D, (2009), DOI: 10.1016/j.physd.2009.10.007.

[13] N. Komarova, A.C. Newell Nonlinear dynamics of sandbanks and sandwaves J. Fluid Mech. 2000 285 321

[14] B.A. Malomed Variational methods in nonlinear fiber optics and related fields Progress in Optics 2002 69 191

[15] P.C. Matthews, S.M. Cox One-dimensional pattern formation with Galilean invariance near a stationary bifurcation Phys. Rev. E 2000 R1473 R1476

[16] P.C. Matthews, S.M. Cox Pattern formation with a conservation law Nonlinearity 2000 1293 1320

[17] A.A. Nepomnyashchy, A.A. Golovin, V. Gubareva, V. Panfilov Global feedback control of a long-wave morphological instability Physica D 2004 61 81

[18] A.C. Newell, J.A. Whitehead Finite amplitude convection J. Fluid Mech. 1969 279 303

[19] B.Y. Rubinstein, A.A. Nepomnyashchy, A.A. Golovin Stability of localized solutions in a subcritically unstable pattern-forming system under a global delayed control Phys. Rev. E 2007

[20] W. Schöpf, L. Kramer Small-amplitude periodic and chaotic solutions of the complex Ginzburg-Landau equation for a subcritical bifurcation Phys. Rev. Lett. 1991 2316 2319

[21] M. Sheintuch, O. Nekhamkina Analysis of front interaction and control in stationary patterns of reaction-diffusion systems Phys. Rev. E 2001

[22] V. Skarka, N.B. Aleksić Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations Phys. Rev. Lett. 2006

[23] L.G. Stanton, A.A. Golovin Global feedback control for pattern-forming systems Phys. Rev. E 2007

[24] E.N. Tsoy, A. Ankiewicz, N. Akhmediev Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation Phys. Rev. E 2006

Cité par Sources :