Voir la notice de l'article provenant de la source EDP Sciences
Y. Kanevsky 1 ; A.A. Nepomnyashchy 1
@article{MMNP_2011_6_1_a10, author = {Y. Kanevsky and A.A. Nepomnyashchy}, title = {Patterns and {Waves} {Generated} by a {Subcritical} {Instability} in {Systems} with a {Conservation} {Law} under the {Action} of a {Global} {Feedback} {Control}}, journal = {Mathematical modelling of natural phenomena}, pages = {188--208}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2011}, doi = {10.1051/mmnp/20116110}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116110/} }
TY - JOUR AU - Y. Kanevsky AU - A.A. Nepomnyashchy TI - Patterns and Waves Generated by a Subcritical Instability in Systems with a Conservation Law under the Action of a Global Feedback Control JO - Mathematical modelling of natural phenomena PY - 2011 SP - 188 EP - 208 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116110/ DO - 10.1051/mmnp/20116110 LA - en ID - MMNP_2011_6_1_a10 ER -
%0 Journal Article %A Y. Kanevsky %A A.A. Nepomnyashchy %T Patterns and Waves Generated by a Subcritical Instability in Systems with a Conservation Law under the Action of a Global Feedback Control %J Mathematical modelling of natural phenomena %D 2011 %P 188-208 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116110/ %R 10.1051/mmnp/20116110 %G en %F MMNP_2011_6_1_a10
Y. Kanevsky; A.A. Nepomnyashchy. Patterns and Waves Generated by a Subcritical Instability in Systems with a Conservation Law under the Action of a Global Feedback Control. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 188-208. doi : 10.1051/mmnp/20116110. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116110/
[1] Soft turbulence in multimode lasers Phys. Rev. A 1997 751 760
, ,[2] A variational approach of nonlinear dissipative pulse propagation Eur. Phys. J. D 1998 313 316
, ,[3] Propagative phase dynamics for systems with Galilean invariance Phys. Rev. Lett. 1985 2857 2859
,[4] Instabilities of one-dimensional cellular patterns Phys. Rev. Lett. 1990 866 869
,[5] Instability and localisation of patterns due to a conserved quantity Physica D 2003 196 219
,[6] Self-organization of quantum dots in epitaxially strained solid films Phys. Rev. E 2003
, ,[7] Feedback control of subcritical Turing instability with zero mode Phys. Rev. E 2009
, ,[8] Feedback control of subcritical oscillatory instabilities Phys. Rev. E 2006
,[9] Interaction between short-scale Marangoni convection and long-scale deformational instability Phys. Fluids 1994 34 47
, ,[10] Nonlinear evolution and secondary instabilities of Marangoni convection in a liquid-gas system with deformable interface J. Fluid Mech. 1997 317 341
, ,[11] Stability and nonlinear dynamics of solitary waves generated by subcritical oscillatory instability under the action of feedback control Phys. Rev. E 2007
,[12] Y. Kanevsky, A.A. Nepomnyashchy. Dynamics of solitary waves generated by subcritical instabiity under the action of delayed feedback control. Physica D, (2009), DOI: 10.1016/j.physd.2009.10.007.
[13] Nonlinear dynamics of sandbanks and sandwaves J. Fluid Mech. 2000 285 321
,[14] Variational methods in nonlinear fiber optics and related fields Progress in Optics 2002 69 191
[15] One-dimensional pattern formation with Galilean invariance near a stationary bifurcation Phys. Rev. E 2000 R1473 R1476
,[16] Pattern formation with a conservation law Nonlinearity 2000 1293 1320
,[17] Global feedback control of a long-wave morphological instability Physica D 2004 61 81
, , ,[18] Finite amplitude convection J. Fluid Mech. 1969 279 303
,[19] Stability of localized solutions in a subcritically unstable pattern-forming system under a global delayed control Phys. Rev. E 2007
, ,[20] Small-amplitude periodic and chaotic solutions of the complex Ginzburg-Landau equation for a subcritical bifurcation Phys. Rev. Lett. 1991 2316 2319
,[21] Analysis of front interaction and control in stationary patterns of reaction-diffusion systems Phys. Rev. E 2001
,[22] Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations Phys. Rev. Lett. 2006
,[23] Global feedback control for pattern-forming systems Phys. Rev. E 2007
,[24] Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation Phys. Rev. E 2006
, ,Cité par Sources :