On Chaotic Subthreshold Oscillations in a Simple Neuronal Model
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 149-162.

Voir la notice de l'article provenant de la source EDP Sciences

In a simple FitzHugh-Nagumo neuronal model with one fast and two slow variables, a sequence of period-doubling bifurcations for small-scale oscillations precedes the transition into the spiking regime. For a wide range of values of the timescale separation parameter, this scenario is recovered numerically. Its relation to the singularly perturbed integrable system is discussed.
DOI : 10.1051/mmnp/20116108

M. Zaks 1

1 Institute of Physics, Humboldt University of Berlin, D-12489, Germany
@article{MMNP_2011_6_1_a8,
     author = {M. Zaks},
     title = {On {Chaotic} {Subthreshold} {Oscillations} in a {Simple} {Neuronal} {Model}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {149--162},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2011},
     doi = {10.1051/mmnp/20116108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116108/}
}
TY  - JOUR
AU  - M. Zaks
TI  - On Chaotic Subthreshold Oscillations in a Simple Neuronal Model
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 149
EP  - 162
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116108/
DO  - 10.1051/mmnp/20116108
LA  - en
ID  - MMNP_2011_6_1_a8
ER  - 
%0 Journal Article
%A M. Zaks
%T On Chaotic Subthreshold Oscillations in a Simple Neuronal Model
%J Mathematical modelling of natural phenomena
%D 2011
%P 149-162
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116108/
%R 10.1051/mmnp/20116108
%G en
%F MMNP_2011_6_1_a8
M. Zaks. On Chaotic Subthreshold Oscillations in a Simple Neuronal Model. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 149-162. doi : 10.1051/mmnp/20116108. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116108/

[1] V. I. Arnold (Editor). Dynamical systems V: Bifurcation theory and catastrophe theory. Encyclopaedia of Mathematical Sciences. Springer. New York, Berlin, Heidelberg, 1999.

[2] M. Brons, M. Krupa, M. Wechselberger Mixed mode oscillations due to the generalized canard phenomenon Fields Institute Communications 2006 39 63

[3] M. Brons, T. J. Kaper, H. G. Rotstein (Editors). Mixed Mode Oscillations: Experiment, Computation, and Analysis. Focus Issue of Chaos, 18 (2008).

[4] J. L. Callot, F. Diener, M. Diener Problem of duck hunt Compt. Rend. Acad. Sci. 1978 1059 1061

[5] P. Collet, J.-P. Eckmann, H. Koch On universality for area-preserving maps of the plane Physica D 1981 457 467

[6] W. Eckhaus Relaxation oscillations including a standard chase on French ducks Lect. Notes Math. 1983 449 494

[7] G. B. Ermentrout Period doublings and possible chaos in neural models SIAM J. Appl. Math. 1984 80 95

[8] M. J. Feigenbaum Quantitative universality for a class of nonlinear transformations J. Stat. Phys. 1978 25 52

[9] J. M. Greene, R. S. Mackay, F. Vivaldi, M. J. Feigenbaum Universal behaviour in families of area-preserving maps Physica D 1981 468 486

[10] J. Keener, J. Sneyd. Mathematical physiology. Springer, New York, 1998.

[11] A. Milik, P. Szmolyan, H. Löffelmann, E. Gröller The geometry of mixed-mode oscillations in the 3d-autocatalator Int. J. Bif. & Chaos 1998 505 519

[12] J. Rinzel Formal Classification of bursting mechanisms in excitable systems Lecture Notes Biomathematics 1987 267 281

[13] O. E. Rössler An equation for continuous chaos Phys. Lett. A 1976 397 398

[14] H. G. Rotstein, R. Kuske Localized and asynchronous patterns via canards in coupled calcium oscillators Physica D 2006 46 61

[15] X. Sailer, M. Zaks, L. Schimansky-Geier Collective dynamics in an ensemble of globally coupled FHN systems Fluctuation & Noise Lett. 2005 L299 L304

[16] T. Verechtchaguina, I. M. Sokolov, L. Schimansky-Geier First passage time densities in non-Markovian models with subthreshold oscillations Europhys. Lett. 2006 691 697

[17] M. Wechselberger Existence and bifurcation of canards in R3 in the case of a folded node SIAM J. Appl. Dyn. Sys. 2005 101 139

[18] M. A. Zaks, X. Sailer, L. Schimansky-Geier, A. Neiman Noise induced complexity: from subthreshold oscillations to spiking in coupled excitable systems Chaos 2005

[19] A. B. Zisook Universal effects of dissipation in two-dimensional mappings Phys. Rev. A 1981 1640 1642

Cité par Sources :