Voir la notice de l'article provenant de la source EDP Sciences
@article{10_1051_mmnp_20116108,
author = {M. Zaks},
title = {On {Chaotic} {Subthreshold} {Oscillations} in a {Simple} {Neuronal} {Model}},
journal = {Mathematical modelling of natural phenomena},
pages = {149--162},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2011},
doi = {10.1051/mmnp/20116108},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116108/}
}
TY - JOUR AU - M. Zaks TI - On Chaotic Subthreshold Oscillations in a Simple Neuronal Model JO - Mathematical modelling of natural phenomena PY - 2011 SP - 149 EP - 162 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116108/ DO - 10.1051/mmnp/20116108 LA - en ID - 10_1051_mmnp_20116108 ER -
%0 Journal Article %A M. Zaks %T On Chaotic Subthreshold Oscillations in a Simple Neuronal Model %J Mathematical modelling of natural phenomena %D 2011 %P 149-162 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116108/ %R 10.1051/mmnp/20116108 %G en %F 10_1051_mmnp_20116108
M. Zaks. On Chaotic Subthreshold Oscillations in a Simple Neuronal Model. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 149-162. doi: 10.1051/mmnp/20116108
[1] V. I. Arnold (Editor). Dynamical systems V: Bifurcation theory and catastrophe theory. Encyclopaedia of Mathematical Sciences. Springer. New York, Berlin, Heidelberg, 1999.
[2] , , Mixed mode oscillations due to the generalized canard phenomenon Fields Institute Communications 2006 39 63
[3] M. Brons, T. J. Kaper, H. G. Rotstein (Editors). Mixed Mode Oscillations: Experiment, Computation, and Analysis. Focus Issue of Chaos, 18 (2008).
[4] , , Problem of duck hunt Compt. Rend. Acad. Sci. 1978 1059 1061
[5] , , On universality for area-preserving maps of the plane Physica D 1981 457 467
[6] Relaxation oscillations including a standard chase on French ducks Lect. Notes Math. 1983 449 494
[7] Period doublings and possible chaos in neural models SIAM J. Appl. Math. 1984 80 95
[8] Quantitative universality for a class of nonlinear transformations J. Stat. Phys. 1978 25 52
[9] , , , Universal behaviour in families of area-preserving maps Physica D 1981 468 486
[10] J. Keener, J. Sneyd. Mathematical physiology. Springer, New York, 1998.
[11] , , , The geometry of mixed-mode oscillations in the 3d-autocatalator Int. J. Bif. & Chaos 1998 505 519
[12] Formal Classification of bursting mechanisms in excitable systems Lecture Notes Biomathematics 1987 267 281
[13] An equation for continuous chaos Phys. Lett. A 1976 397 398
[14] , Localized and asynchronous patterns via canards in coupled calcium oscillators Physica D 2006 46 61
[15] , , Collective dynamics in an ensemble of globally coupled FHN systems Fluctuation & Noise Lett. 2005 L299 L304
[16] , , First passage time densities in non-Markovian models with subthreshold oscillations Europhys. Lett. 2006 691 697
[17] Existence and bifurcation of canards in R3 in the case of a folded node SIAM J. Appl. Dyn. Sys. 2005 101 139
[18] , , , Noise induced complexity: from subthreshold oscillations to spiking in coupled excitable systems Chaos 2005
[19] Universal effects of dissipation in two-dimensional mappings Phys. Rev. A 1981 1640 1642
Cité par Sources :