Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2011_6_1_a8, author = {M. Zaks}, title = {On {Chaotic} {Subthreshold} {Oscillations} in a {Simple} {Neuronal} {Model}}, journal = {Mathematical modelling of natural phenomena}, pages = {149--162}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2011}, doi = {10.1051/mmnp/20116108}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116108/} }
TY - JOUR AU - M. Zaks TI - On Chaotic Subthreshold Oscillations in a Simple Neuronal Model JO - Mathematical modelling of natural phenomena PY - 2011 SP - 149 EP - 162 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116108/ DO - 10.1051/mmnp/20116108 LA - en ID - MMNP_2011_6_1_a8 ER -
M. Zaks. On Chaotic Subthreshold Oscillations in a Simple Neuronal Model. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 149-162. doi : 10.1051/mmnp/20116108. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116108/
[1] V. I. Arnold (Editor). Dynamical systems V: Bifurcation theory and catastrophe theory. Encyclopaedia of Mathematical Sciences. Springer. New York, Berlin, Heidelberg, 1999.
[2] Mixed mode oscillations due to the generalized canard phenomenon Fields Institute Communications 2006 39 63
, ,[3] M. Brons, T. J. Kaper, H. G. Rotstein (Editors). Mixed Mode Oscillations: Experiment, Computation, and Analysis. Focus Issue of Chaos, 18 (2008).
[4] Problem of duck hunt Compt. Rend. Acad. Sci. 1978 1059 1061
, ,[5] On universality for area-preserving maps of the plane Physica D 1981 457 467
, ,[6] Relaxation oscillations including a standard chase on French ducks Lect. Notes Math. 1983 449 494
[7] Period doublings and possible chaos in neural models SIAM J. Appl. Math. 1984 80 95
[8] Quantitative universality for a class of nonlinear transformations J. Stat. Phys. 1978 25 52
[9] Universal behaviour in families of area-preserving maps Physica D 1981 468 486
, , ,[10] J. Keener, J. Sneyd. Mathematical physiology. Springer, New York, 1998.
[11] The geometry of mixed-mode oscillations in the 3d-autocatalator Int. J. Bif. & Chaos 1998 505 519
, , ,[12] Formal Classification of bursting mechanisms in excitable systems Lecture Notes Biomathematics 1987 267 281
[13] An equation for continuous chaos Phys. Lett. A 1976 397 398
[14] Localized and asynchronous patterns via canards in coupled calcium oscillators Physica D 2006 46 61
,[15] Collective dynamics in an ensemble of globally coupled FHN systems Fluctuation & Noise Lett. 2005 L299 L304
, ,[16] First passage time densities in non-Markovian models with subthreshold oscillations Europhys. Lett. 2006 691 697
, ,[17] Existence and bifurcation of canards in R3 in the case of a folded node SIAM J. Appl. Dyn. Sys. 2005 101 139
[18] Noise induced complexity: from subthreshold oscillations to spiking in coupled excitable systems Chaos 2005
, , ,[19] Universal effects of dissipation in two-dimensional mappings Phys. Rev. A 1981 1640 1642
Cité par Sources :