Pattern Formation Induced by Time-Dependent Advection
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 138-148.

Voir la notice de l'article provenant de la source EDP Sciences

We study pattern-forming instabilities in reaction-advection-diffusion systems. We develop an approach based on Lyapunov-Bloch exponents to figure out the impact of a spatially periodic mixing flow on the stability of a spatially homogeneous state. We deal with the flows periodic in space that may have arbitrary time dependence. We propose a discrete in time model, where reaction, advection, and diffusion act as successive operators, and show that a mixing advection can lead to a pattern-forming instability in a two-component system where only one of the species is advected. Physically, this can be explained as crossing a threshold of Turing instability due to effective increase of one of the diffusion constants.
DOI : 10.1051/mmnp/20116107

A. V. Straube 1, 2 ; A. Pikovsky 2

1 Department of Physics, Humboldt University of Berlin, Newtonstr. 15, D-12489, Berlin, Germany
2 Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany
@article{MMNP_2011_6_1_a7,
     author = {A. V. Straube and A. Pikovsky},
     title = {Pattern {Formation} {Induced} by {Time-Dependent} {Advection}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {138--148},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2011},
     doi = {10.1051/mmnp/20116107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116107/}
}
TY  - JOUR
AU  - A. V. Straube
AU  - A. Pikovsky
TI  - Pattern Formation Induced by Time-Dependent Advection
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 138
EP  - 148
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116107/
DO  - 10.1051/mmnp/20116107
LA  - en
ID  - MMNP_2011_6_1_a7
ER  - 
%0 Journal Article
%A A. V. Straube
%A A. Pikovsky
%T Pattern Formation Induced by Time-Dependent Advection
%J Mathematical modelling of natural phenomena
%D 2011
%P 138-148
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116107/
%R 10.1051/mmnp/20116107
%G en
%F MMNP_2011_6_1_a7
A. V. Straube; A. Pikovsky. Pattern Formation Induced by Time-Dependent Advection. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 138-148. doi : 10.1051/mmnp/20116107. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116107/

[1] T. M. Antonsen, Z. Fan, E. Ott, E. Garcia-Lopes The role of chaotic orbits in the determination of power spectra of passive scalars Phys. Fluids 1996 3094 3104

[2] L. M. Pismen Differential flow induced chemical instability and Turing instability for Couette flow Phys. Rev. E 1998 4524 4531

[3] J. Huisman, N. N. P. Thi, D. M. Karl, B. Sommeijer Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum Nature 2002 322 325

[4] Y. Khazan, L. M. Pismen Differential flow induced chemical instability on a rotating disk Phys. Rev. Lett. 1995 4318 4321

[5] M. Leconte, J. Martin, N. Rakotomalala, D. Salin Pattern of reaction diffusion fronts in laminar flows Phys. Rev. Lett. 2002

[6] G. Nicolis, G. Prigogine. Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. Wiley Sons, New York, 1977.

[7] A. S. Pikovsky Spatial development of chaos in nonlinear media Phys. Lett. A 1989 121 127

[8] A. Pikovsky, O. Popovych Persistent patterns in deterministic mixing flows Europhys. Lett. 2003 625 631

[9] L. Pismen. Patterns and interfaces in dissipative dynamics. Springer, Berlin, 2006.

[10] D. Rothstein, E. Henry, J. P. Gollub Persistent patterns in transient chaotic fluid mixing Nature 1999 770 772

[11] A. B. Rovinsky, M. Menzinger Differential flow instability in dynamical systems without an unstable (activator) subsystem Phys. Rev. Lett. 1994 2017 2020

[12] A. Straube, M. Abel, A. Pikovsky Temporal chaos versus spatial mixing in reaction-advection-diffusion systems Phys. Rev. Lett. 2004

[13] T. Tél, A. De Moura, C. Grebogi, G. Károlyi Chemical and biological activity in open flows: a dynamical system approach Physics Reports 2005 91 196

[14] A. M. Turing The chemical basis of morphogenesis Philos. Trans. Roy. Soc. London, Ser. B 1952 37 72

[15] D. A. Vasquez Chemical instability induced by a shear flow Phys. Rev. Lett. 2004

[16] V. Z. Yakhnin, A. B. Rovinsky, M. Menzinger Convective instability induced by differential transport in the tubular packed-bed reactor Chemical Engineering Science 1995 2853 2859

Cité par Sources :