Voir la notice de l'article provenant de la source EDP Sciences
A. V. Straube 1, 2 ; A. Pikovsky 2
@article{10_1051_mmnp_20116107,
author = {A. V. Straube and A. Pikovsky},
title = {Pattern {Formation} {Induced} by {Time-Dependent} {Advection}},
journal = {Mathematical modelling of natural phenomena},
pages = {138--148},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2011},
doi = {10.1051/mmnp/20116107},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116107/}
}
TY - JOUR AU - A. V. Straube AU - A. Pikovsky TI - Pattern Formation Induced by Time-Dependent Advection JO - Mathematical modelling of natural phenomena PY - 2011 SP - 138 EP - 148 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116107/ DO - 10.1051/mmnp/20116107 LA - en ID - 10_1051_mmnp_20116107 ER -
%0 Journal Article %A A. V. Straube %A A. Pikovsky %T Pattern Formation Induced by Time-Dependent Advection %J Mathematical modelling of natural phenomena %D 2011 %P 138-148 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116107/ %R 10.1051/mmnp/20116107 %G en %F 10_1051_mmnp_20116107
A. V. Straube; A. Pikovsky. Pattern Formation Induced by Time-Dependent Advection. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 138-148. doi: 10.1051/mmnp/20116107
[1] , , , The role of chaotic orbits in the determination of power spectra of passive scalars Phys. Fluids 1996 3094 3104
[2] Differential flow induced chemical instability and Turing instability for Couette flow Phys. Rev. E 1998 4524 4531
[3] , , , Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum Nature 2002 322 325
[4] , Differential flow induced chemical instability on a rotating disk Phys. Rev. Lett. 1995 4318 4321
[5] , , , Pattern of reaction diffusion fronts in laminar flows Phys. Rev. Lett. 2002
[6] G. Nicolis, G. Prigogine. Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. Wiley Sons, New York, 1977.
[7] Spatial development of chaos in nonlinear media Phys. Lett. A 1989 121 127
[8] , Persistent patterns in deterministic mixing flows Europhys. Lett. 2003 625 631
[9] L. Pismen. Patterns and interfaces in dissipative dynamics. Springer, Berlin, 2006.
[10] , , Persistent patterns in transient chaotic fluid mixing Nature 1999 770 772
[11] , Differential flow instability in dynamical systems without an unstable (activator) subsystem Phys. Rev. Lett. 1994 2017 2020
[12] , , Temporal chaos versus spatial mixing in reaction-advection-diffusion systems Phys. Rev. Lett. 2004
[13] , , , Chemical and biological activity in open flows: a dynamical system approach Physics Reports 2005 91 196
[14] The chemical basis of morphogenesis Philos. Trans. Roy. Soc. London, Ser. B 1952 37 72
[15] Chemical instability induced by a shear flow Phys. Rev. Lett. 2004
[16] , , Convective instability induced by differential transport in the tubular packed-bed reactor Chemical Engineering Science 1995 2853 2859
Cité par Sources :