Voir la notice de l'article provenant de la source EDP Sciences
A. V. Straube 1, 2 ; A. Pikovsky 2
@article{MMNP_2011_6_1_a7, author = {A. V. Straube and A. Pikovsky}, title = {Pattern {Formation} {Induced} by {Time-Dependent} {Advection}}, journal = {Mathematical modelling of natural phenomena}, pages = {138--148}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2011}, doi = {10.1051/mmnp/20116107}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116107/} }
TY - JOUR AU - A. V. Straube AU - A. Pikovsky TI - Pattern Formation Induced by Time-Dependent Advection JO - Mathematical modelling of natural phenomena PY - 2011 SP - 138 EP - 148 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116107/ DO - 10.1051/mmnp/20116107 LA - en ID - MMNP_2011_6_1_a7 ER -
%0 Journal Article %A A. V. Straube %A A. Pikovsky %T Pattern Formation Induced by Time-Dependent Advection %J Mathematical modelling of natural phenomena %D 2011 %P 138-148 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116107/ %R 10.1051/mmnp/20116107 %G en %F MMNP_2011_6_1_a7
A. V. Straube; A. Pikovsky. Pattern Formation Induced by Time-Dependent Advection. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 138-148. doi : 10.1051/mmnp/20116107. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116107/
[1] The role of chaotic orbits in the determination of power spectra of passive scalars Phys. Fluids 1996 3094 3104
, , ,[2] Differential flow induced chemical instability and Turing instability for Couette flow Phys. Rev. E 1998 4524 4531
[3] Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum Nature 2002 322 325
, , ,[4] Differential flow induced chemical instability on a rotating disk Phys. Rev. Lett. 1995 4318 4321
,[5] Pattern of reaction diffusion fronts in laminar flows Phys. Rev. Lett. 2002
, , ,[6] G. Nicolis, G. Prigogine. Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. Wiley Sons, New York, 1977.
[7] Spatial development of chaos in nonlinear media Phys. Lett. A 1989 121 127
[8] Persistent patterns in deterministic mixing flows Europhys. Lett. 2003 625 631
,[9] L. Pismen. Patterns and interfaces in dissipative dynamics. Springer, Berlin, 2006.
[10] Persistent patterns in transient chaotic fluid mixing Nature 1999 770 772
, ,[11] Differential flow instability in dynamical systems without an unstable (activator) subsystem Phys. Rev. Lett. 1994 2017 2020
,[12] Temporal chaos versus spatial mixing in reaction-advection-diffusion systems Phys. Rev. Lett. 2004
, ,[13] Chemical and biological activity in open flows: a dynamical system approach Physics Reports 2005 91 196
, , ,[14] The chemical basis of morphogenesis Philos. Trans. Roy. Soc. London, Ser. B 1952 37 72
[15] Chemical instability induced by a shear flow Phys. Rev. Lett. 2004
[16] Convective instability induced by differential transport in the tubular packed-bed reactor Chemical Engineering Science 1995 2853 2859
, ,Cité par Sources :