Voir la notice de l'article provenant de la source EDP Sciences
J. C. Tzou 1 ; A. Bayliss 1 ; B.J. Matkowsky 1 ; V.A. Volpert 1
@article{MMNP_2011_6_1_a5, author = {J. C. Tzou and A. Bayliss and B.J. Matkowsky and V.A. Volpert}, title = {Interaction of {Turing} and {Hopf} {Modes} in the {Superdiffusive} {Brusselator} {Model} {Near} a {Codimension} {Two} {Bifurcation} {Point}}, journal = {Mathematical modelling of natural phenomena}, pages = {87--118}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2011}, doi = {10.1051/mmnp/20116105}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116105/} }
TY - JOUR AU - J. C. Tzou AU - A. Bayliss AU - B.J. Matkowsky AU - V.A. Volpert TI - Interaction of Turing and Hopf Modes in the Superdiffusive Brusselator Model Near a Codimension Two Bifurcation Point JO - Mathematical modelling of natural phenomena PY - 2011 SP - 87 EP - 118 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116105/ DO - 10.1051/mmnp/20116105 LA - en ID - MMNP_2011_6_1_a5 ER -
%0 Journal Article %A J. C. Tzou %A A. Bayliss %A B.J. Matkowsky %A V.A. Volpert %T Interaction of Turing and Hopf Modes in the Superdiffusive Brusselator Model Near a Codimension Two Bifurcation Point %J Mathematical modelling of natural phenomena %D 2011 %P 87-118 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116105/ %R 10.1051/mmnp/20116105 %G en %F MMNP_2011_6_1_a5
J. C. Tzou; A. Bayliss; B.J. Matkowsky; V.A. Volpert. Interaction of Turing and Hopf Modes in the Superdiffusive Brusselator Model Near a Codimension Two Bifurcation Point. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 87-118. doi : 10.1051/mmnp/20116105. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116105/
[1] Spatially localized states in Marangoni convection in binary mixtures Fluid Dynamics Research 2008 852 876
, ,[2] Nonadiabatic effects in convection Phys. Rev. 1988 5461 5464
, ,[3] Localized states in the generalized Swift-Hohenberg equation Phys. Rev. 2006
,[4] Homoclinic snaking: structure and stability Chaos 2007
,[5] Reaction and diffusion on growing domains: Scenarios for robust pattern formation Bull. Math. Biol. 1999 1093 1120
, ,[6] Spatial patterns and spatiotemporal dynamics in chemical systems Adv. Chem. Phys. 1999 435 513
[7] Spatiotemporal dynamics near a codimension-two point Phys. Rev. 1996 261 271
, , ,[8] Turing pattern formation in the Brusselator model with superdiffusion SIAM J. Appl. Math. 2008 251 272
, ,[9] Domain boundaries in convection patterns Phys. Rev. 1990 7244 7263
, ,[10] The random walk’s guide to anomalous diffusion: a fractional dynamics approach Phys. Rep. 2000 1 77
,[11] Oscillatory instability in super-diffusive reaction-diffusion systems: Fractional amplitude and phase diffusion equations EPL 2008
, ,[12] K.B. Oldham, J. Spanier. The fractional calculus. Academic Press, New York, 1974.
[13] Front motion, metastability and subcritical bifurcations in hydrodynamics Physica 1986 3 11
[14] Interaction of Turing and Hopf modes in the superdiffusive Brusselator model Appl. Math. Lett. 2009 1432 1437
, ,[15] Pattern formation arising from interaction between Turing and wave instabilities J. Chem. Phys. 2002 7259 7265
, , ,Cité par Sources :