Determination of the Thickness and Composition Profiles for a Film of Binary Mixture on a Solid Substrate
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 62-86.

Voir la notice de l'article provenant de la source EDP Sciences

We determine the steady-state structures that result from liquid-liquid demixing in a free surface film of binary liquid on a solid substrate. The considered model corresponds to the static limit of the diffuse interface theory describing the phase separation process for a binary liquid (model-H), when supplemented by boundary conditions at the free surface and taking the influence of the solid substrate into account. The resulting variational problem is numerically solved employing a Finite Element Method on an adaptive grid. The developed numerical scheme allows us to obtain the coupled steady-state film thickness profile and the concentration profile inside the film. As an example we determine steady state profiles for a reflection-symmetric two-dimensional droplet for various surface tensions of the film and various preferential attraction strength of one component to the substrate. We discuss the relation of the results of the present diffuse interface theory to the sharp interface limit and determine the effective interface tension of the diffuse interface by several means.
DOI : 10.1051/mmnp/20116104

L. Fraštia 1 ; U. Thiele 1 ; L. M. Pismen 2

1 Department of Mathematical Sciences, Loughborough University Loughborough, Leicestershire, LE11 3TU, UK
2 Minerva Center for Nonlinear Physics of Complex Systems Technion–Israel Institute of Technology, 32000 Haifa, Israel
@article{MMNP_2011_6_1_a4,
     author = {L. Fra\v{s}tia and U. Thiele and L. M. Pismen},
     title = {Determination of the {Thickness} and {Composition} {Profiles} for a {Film} of {Binary} {Mixture} on a {Solid} {Substrate}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {62--86},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2011},
     doi = {10.1051/mmnp/20116104},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116104/}
}
TY  - JOUR
AU  - L. Fraštia
AU  - U. Thiele
AU  - L. M. Pismen
TI  - Determination of the Thickness and Composition Profiles for a Film of Binary Mixture on a Solid Substrate
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 62
EP  - 86
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116104/
DO  - 10.1051/mmnp/20116104
LA  - en
ID  - MMNP_2011_6_1_a4
ER  - 
%0 Journal Article
%A L. Fraštia
%A U. Thiele
%A L. M. Pismen
%T Determination of the Thickness and Composition Profiles for a Film of Binary Mixture on a Solid Substrate
%J Mathematical modelling of natural phenomena
%D 2011
%P 62-86
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116104/
%R 10.1051/mmnp/20116104
%G en
%F MMNP_2011_6_1_a4
L. Fraštia; U. Thiele; L. M. Pismen. Determination of the Thickness and Composition Profiles for a Film of Binary Mixture on a Solid Substrate. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 62-86. doi : 10.1051/mmnp/20116104. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116104/

[1] D.M. Anderson, G.B. Mcfadden, A.A. Wheeler Diffuse-Interface methods in fluid mechanics Ann. Rev. Fluid Mech. 1998 139 165

[2] L.K. Antanovskii Microscale theory of surface tension Phys. Rev. E 1996 6285 6290

[3] D. Bandyopadhyay, R. Gulabani, A. Sharma Stability and dynamics of bilayers Ind. Eng. Chem. Res. 2005 1259 1272

[4] K.-J. Bathe. Finite element procedures. Prentice-Hall, New Jersey, 2nd edition, 1995.

[5] K. Binder Spinodal decomposition in confined geometry J. Non-Equilib. Thermodyn. 1998 1 44

[6] L. Brusch, H. Kühne, U. Thiele, M. Bär Dewetting of thin films on heterogeneous substrates: Pinning vs. coarsening Phys. Rev. E 2002

[7] J.W. Cahn, J.E. Hilliard Free energy of a nonuniform System. 1. Interfacual free energy J. Chem. Phys. 1958 258 267

[8] H.P. Fischer, P. Maass, W. Dieterich Novel surface modes in spinodal decomposition Phys. Rev. Lett. 1997 893 896

[9] H.P. Fischer, P. Maass, W. Dieterich Diverging time and length scales of spinodal decomposition modes in thin films Europhys. Lett. 1998 49 54

[10] L.S. Fisher, A.A. Golovin Nonlinear stability analysis of a two-layer thin liquid film: Dewetting and autophobic behavior J. Colloid Interface Sci. 2005 515 528

[11] L.S. Fisher, A.A. Golovin Instability of a two-layer thin liquid film with surfactants: Dewetting waves J. Colloid Interface Sci. 2007 203 214

[12] O.A. Frolovskaya, A.A. Nepomnyashchy, A. Oron, A.A. Golovin Stability of a two-layer binary-fluid system with a diffuse interface Phys. Fluids 2008

[13] M. Geoghegan, G. Krausch Wetting at polymer surfaces and interfaces Prog. Polym. Sci. 2003 261 302

[14] A.A. Golovin, S.H. Davis, A.A. Nepomnyashchy A convective Cahn-Hilliard model for the formation of facets and corners in crystal growth Physica D 1998 202 230

[15] A.A. Golovin, A.A. Nepomnyashchy, S.H. Davis, M.A. Zaks Convective Cahn-Hilliard models: From coarsening to roughening Phys. Rev. Lett. 2001 1550 1553

[16] L.V. Govor, J. Parisi, G.H. Bauer, G. Reiter Instability and droplet formation in evaporating thin films of a binary solution Phys. Rev. E 2005

[17] P.C. Hohenberg, B.I. Halperin Theory of dynamic critical phenomena Rev. Mod. Phys. 1977 435 479

[18] K.D. Jandt, J. Heier, F.S. Bates, E.J. Kramer Transient surface roughening of thin films of phase separating polymer mixtures Langmuir 1996 3716 3720

[19] D. Jasnow, J. Viñals Coarse-grained description of thermo-capillary flow Phys. Fluids 1996 660 669

[20] R.A.L. Jones, L.J. Norton, E.J. Kramer, F.S. Bates, P. Wiltzius Surface-directed spinodal decomposition Phys. Rev. Lett. 1991 1326 1329

[21] S. Kalliadasis, U. Thiele (eds.). Thin Films of Soft Matter. Springer, Wien / New York, CISM 490, 2007.

[22] K. Kargupta, R. Konnur, A. Sharma Instability and pattern formation in thin liquid films on chemically heterogeneous substrates Langmuir 2000 10243 10253

[23] K. Kargupta, A. Sharma Templating of thin films induced by dewetting on patterned surfaces Phys. Rev. Lett. 2001 4536 4539

[24] A. Karim, J.F. Douglas, B.P. Lee, S.C. Glotzer, J.A. Rogers, R.J. Jackman, E.J. Amis, G.M. Whitesides Phase separation of ultrathin polymer-blend films on patterned substrates Phys. Rev. E 1998 R6273 R6276

[25] R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl, W. Dieterich Phase separation in confined geometries: Solving the Cahn-Hilliard equation with generic boundary conditions Comp. Phys. Comm. 2001 139 157

[26] T. Kerle, J. Klein, R. Yerushalmi-Rozen Accelerated rupture at the liquid/liquid interface Langmuir 2002 10146 10154

[27] J.S. Langer. An introduction to the kinetics of first-order phase transitions. in ’Solids far from Equilibrium’ (ed. by Godreche), Cambridge University Press, (1992), 297–363.

[28] J. Lowengrub, L. Truskinovsky Quasi-incompressible Cahn-Hilliard fluids and topological transitions Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 1998 2617 2654

[29] S. Madruga, U. Thiele Decomposition driven interface evolution for layers of binary mixtures: II. Influence of convective transport on linear stability Phys. Fluids 2009

[30] S. Mechkov, M. Rauscher, S. Dietrich Stability of liquid ridges on chemical micro- and nanostripes Phys. Rev. E 2008

[31] P. Müller-Buschbaum, E. Bauer, S. Pfister, S.V. Roth, M. Burghammer, C. Riekel, C. David, U. Thiele Creation of multi-scale stripe-like patterns in thin polymer blend films Europhys. Lett. 2006 35 41

[32] G. Nisato, B.D. Ermi, J.F. Douglas, A. Karim Excitation of surface deformation modes of a phase-separating polymer blend on a patterned substrate Macromolecules 1999 2356 2364

[33] A. Oron, S.H. Davis, S.G. Bankoff Long-scale evolution of thin liquid films Rev. Mod. Phys. 1997 931 980

[34] L.M. Pismen Mesoscopic hydrodynamics of contact line motion Colloid Surf. A-Physicochem. Eng. Asp. 2002 11 30

[35] L.M. Pismen, Y. Pomeau Disjoining potential and spreading of thin liquid layers in the diffuse interface model coupled to hydrodynamics Phys. Rev. E 2000 2480 2492

[36] A. Pototsky, M. Bestehorn, D. Merkt, U. Thiele Alternative pathways of dewetting for a thin liquid two-layer film Phys. Rev. E 2004

[37] A. Pototsky, M. Bestehorn, D. Merkt, U. Thiele Morphology changes in the evolution of liquid two-layer films J. Chem. Phys. 2005

[38] A. Pototsky, M. Bestehorn, D. Merkt, U. Thiele 3D Surface Patterns in liquid two-layer films Europhys. Lett. 2006 665 671

[39] U. Thiele, L. Brusch, M. Bestehorn, M. Bär Modelling thin-film dewetting on structured substrates and templates: Bifurcation analysis and numerical simulations Eur. Phys. J. E 2003 255 271

[40] U. Thiele, S. Madruga, L. Frastia Decomposition driven interface evolution for layers of binary mixtures: I. Model derivation and stratified base states Phys. Fluids 2007

[41] N. Vladimirova, A. Malagoli, R. Mauri Diffusion-driven phase separation of deeply quenched mixtures Phys. Rev. E 1998 7691 7699

[42] N. Vladimirova, A. Malagoli, R. Mauri Two-dimensional model of phase segregation in liquid binary mixtures Phys. Rev. E 1999 6968 6977

[43] H. Wang, R.J. Composto Thin film polymer blends undergoing phase separation and wetting: Identification of early, intermediate, and late stages J. Chem. Phys. 2000 10386 10397

[44] H. Wang, R.J. Composto Understanding morphology evolution and roughening in phase-separating thin-film polymer blends Europhys. Lett. 2000 622 627

Cité par Sources :