Theory of Dilute Binary Granular Gas Mixtures
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 17-47.

Voir la notice de l'article provenant de la source EDP Sciences

A computer-aided method for accurately carrying out the Chapman-Enskog expansion of the Boltzmann equation, including its inelastic variant, is presented and employed to derive a hydrodynamic description of a dilute binary mixture of smooth inelastic spheres. Constitutive relations, formally valid for all physical values of the coefficients of restitution, are calculated by carrying out the pertinent Chapman-Enskog expansion to sufficient high orders in the Sonine polynomials to ensure numerical convergence. The resulting hydrodynamic description is applied to the analysis of a vertically vibrated binary mixture of particles (under gravity) differing only in their respective coefficients of restitution. It is shown that even with this “minor”difference the mixture partly segregates, its steady state exhibiting a sandwich-like configuration.
DOI : 10.1051/mmnp/20116102

D. Serero 1 ; S. H. Noskowicz 1 ; I. Goldhirsch 1

1 School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Ramat-Aviv Tel Aviv 69978, Israel
@article{MMNP_2011_6_1_a2,
     author = {D. Serero and S. H. Noskowicz and I. Goldhirsch},
     title = {Theory of {Dilute} {Binary} {Granular} {Gas} {Mixtures}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {17--47},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2011},
     doi = {10.1051/mmnp/20116102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116102/}
}
TY  - JOUR
AU  - D. Serero
AU  - S. H. Noskowicz
AU  - I. Goldhirsch
TI  - Theory of Dilute Binary Granular Gas Mixtures
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 17
EP  - 47
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116102/
DO  - 10.1051/mmnp/20116102
LA  - en
ID  - MMNP_2011_6_1_a2
ER  - 
%0 Journal Article
%A D. Serero
%A S. H. Noskowicz
%A I. Goldhirsch
%T Theory of Dilute Binary Granular Gas Mixtures
%J Mathematical modelling of natural phenomena
%D 2011
%P 17-47
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116102/
%R 10.1051/mmnp/20116102
%G en
%F MMNP_2011_6_1_a2
D. Serero; S. H. Noskowicz; I. Goldhirsch. Theory of Dilute Binary Granular Gas Mixtures. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 17-47. doi : 10.1051/mmnp/20116102. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116102/

[1] B. Ö. Arnarson, J. T. Willits Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity Phys. Fluids 1998 1324 1328

[2] M. Bose, P. R. Nott, V. Kumaran Excluded-volume attraction in vibrated granular mixtures Europhys. Lett. 2004 508 514

[3] J. J. Brey, M. J. Ruiz-Montero, F. Moreno Hydrodynamics of an open vibrated granular system Phys. Rev. E 2001

[4] J. J. Brey, M. J. Ruiz-Montero, F. Moreno Energy partition and segregation for an intruder in a vibrated granular system under gravity Phys. Rev. Lett. 2005

[5] N. V. Brillantov, T. Pöschel Breakdown of the Sonine expansion for the velocity distribution of granular gases Europhys. Lett. 2006 424 430

[6] R. Brito, H. Enriquez, S. Godoy, R. Soto Segregation induced by inelasticity in a vibrofluidized granular mixture Phys. Rev. E 2008

[7] D. Brone, F. J. Muzzio Size segregation in vibrated granular systems: A reversible process Phys. Rev. E 1997 1059 1063

[8] S. Chapman and T. G. Cowling. The mathematical Theory of Nonuniform Gases. Cambridge Univ. Press, London, 1970.

[9] W. Cooke, S. Warr, J. M. Huntley, R. C. Ball Particle size segregation in a two-dimensional bed undergoing vertical vibration Phys. Rev. E 1996 2812 2822

[10] S. R. de Groot and P. Mazur. Non-Equilibrium Thermodynamics. North-Holland, Amsterdam, 1969.

[11] S. E. Esipov, T. Pöschel The granular phase diagram J. Stat. Phys. 1997 1385 1395

[12] Z. Farkas, F. Szalai, D. E. Wolf, T. Vicsek Segregation of binary mixtures by a ratchet mechanism Phys. Rev. E 2002

[13] V. Garzó Segregation in granular binary mixtures: Thermal diffusion Europhys. Lett. 2006 521 527

[14] V. Garzó Brazil-nut effect versus reverse Brazil-nut effect in a moderately dense granular fluid Phys. Rev. E 2008

[15] V. Garzó, J. W. Dufty Hydrodynamics for a granular binary mixture at low density Phys Fluids 2002 1476 14902

[16] V. Garzó, F. V. Reyes, J. M. Montanero Modified Sonine approximation for granular binary mixtures J Fluid Mech. 2009 387 411

[17] I. Goldhirsch Rapid granular flows Annu Rev Fluid Mech. 2003 267 293

[18] I. Goldhirsch, D. Ronis Theory of thermophoresis I: General considerations and mode coupling analysis Phys Rev. A 1983 1616 1634

[19] I. Goldhirsch, D. Ronis Theory of thermophoresis II: Low-density behavior Phys Rev. A 1983 1635 1656

[20] D. C. Hong, P. V. Quinn, S. Luding The reverse Brazil nut problem: Competition between percolation and condensation Phys Rev Lett. 2001 3423 3426

[21] S. S. Hsiau, M. L. Hunt Granular thermal diffusion in flows of binary-sized mixtures Acta Mech. 1996 121 137

[22] H. M. Jaeger, S. R. Nagel, R. P. Behringer Granular solids, liquids, and gases Rev Mod Phys. 1996 1259 1273

[23] J. T. Jenkins, F. Mancini Kinetic theory for binary mixtures of smooth nearly elastic spheres Phys Fluids A 1989 2050 2059

[24] J. T. Jenkins, D. K. Yoon Segregation in binary mixture under gravity Phys Rev Lett. 2002

[25] J. M. Kincaid, E. G. D. Cohen, M. Lopez De Haro The Enskog theory for multicomponent mixtures. iv. thermal diffusion J Chem Phys. 1987 963 975

[26] J. B. Knight, E. E. Ehrlich, V. Y. Kuperman, J. K. Flint, H. M. Jaeger, S. R. Nagel Experimental study of granular convection Phys Rev. E 1996 5726 5738

[27] J. B. Knight, H. M. Jaeger, S. R. Nagel Vibration-induced size separation in granular media, No. 4, The convection connection Phys Rev Lett. 1993 3728 3731

[28] L. Kondic, R. R. Hartley, S. G. K. Tennakoon, B. Painter, R. P. Behringer Segregation by friction Europhys Lett. 2003 742 748

[29] A. Kudrolli Size separation in vibrated granular matter Reports on Progress in Physics. 2004 209 247

[30] L. D. Landau, E. M. Lifshitz. Fluid Mechanics. Pergamon, London, 1959.

[31] M. E. Mobius, X. Cheng, P. Eshuis, S. R. Karczmar, G. S. Nagel, H. M. Jaeger Effect of air on granular size separation in a vibrated granular bed Phys Rev. E 2005

[32] S. H. Noskowicz, O. Bar-Lev, D. Serero, I. Goldhirsch Computer-aided kinetic theory and granular gases Europhys Lett. 2007

[33] J. M. Ottino, D. V. Khakhar Mixing and segregation of granular materials Annu Rev Fluid Mech. 2000 55 91

[34] T. Pöschel, N. V. Brillantov, A. Formella Impact of high-energy tails on granular gas properties Phys Rev. E 2006

[35] T. Pöschel, H. J. Herrmann Size segregation and convection Europhys Lett. 1995 123 128

[36] D. C. Rapaport Mechanism for granular segregation Phys Rev. E 2001

[37] P. M. Reis, T. Mullin Granular segregation as a critical phenomenon Phys Rev Lett. 2002

[38] A. Rosato, K. J. Strandburg, F. Prinz, R. H. Swendsen Why the Brazil nuts are on top: size segregation of particulate matter by shaking Phys Rev Lett. 1987 1038 1040

[39] M. Schröter, S. Ulrich, J. Keft, J. B. Swift, H. L. Swinney Mechanism in the size segregation of a binary granular mixture Phys Rev. E 2006

[40] N. Sela, I. Goldhirsch Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order J Fluid Mech. 1998 41 74

[41] D. Serero, S. H. Noskowicz, and I. Tan, M. L. Goldhirsch. Layering effects in vertically vibrated systems., Eur. Phys. J. E (2009).

[42] D. Serero. Kinetic Theory of Granular Gas Mixtures. PhD thesis, Tel Aviv University, 2009.

[43] D. Serero, I. Goldhirsch, S. H. Noskowicz, M. L. Tan Hydrodynamics of granular gases and granular gas mixtures J Fluid Mech. 2006 237 258

[44] D. Serero, S. H. Noskowicz, I. Goldhirsch Exact versus mean field solutions for granular gas mixtures Gran. Matt. 2007 37 46

[45] T. Shinbrot, F. J. Muzzio Reverse buoyancy in shaken granular beds Phys Rev Lett. 1998 4365 4368

[46] T. Shinbrot, F. J. Muzzio Nonequilibrium patterns in granular mixing and segregation "Physics Today" 2000 25 30

[47] L. Trujillo, M. Alam, H. J. Herrmann Segregation in a fluidized binary granular mixture: competition between buoyancy and geometric force Europhys Lett. 2003 190 196

[48] S. Ulrich, M. Schröter, H. L. Swinney Influence of friction on granular segregation Phys Rev. E 2007

[49] H. Viswanathan, R. D. Wildman, J. M. Huntley, T. W. Martin Comparison of kinetic theory predictions with experimental results for a vibrated three-dimensional granular bed Phys Fluids 2006

[50] R. D. Wildman, J. T. Jenkins, P. E. Krouskop, J. Talbot A comparison of the predictions of a simple kinetic theory with experimental and numerical results for a vibrated granular bed consisting of nearly elastic particles Phys Fluids 2006

[51] D. K. Yoon, J. T. Jenkins The influence of different species’ granular temperatures on segregation in a binary mixture of dissipative grains Phys Fluids 2006

Cité par Sources :