Voir la notice de l'article provenant de la source EDP Sciences
I. Brailovsky 1 ; M. Frankel 2 ; L. Kagan 1 ; G. Sivashinsky 1
@article{MMNP_2011_6_1_a1, author = {I. Brailovsky and M. Frankel and L. Kagan and G. Sivashinsky}, title = {On {Oscillatory} {Instability} in {Convective} {Burning} of {Gas-Permeable} {Explosives}}, journal = {Mathematical modelling of natural phenomena}, pages = {3--16}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2011}, doi = {10.1051/mmnp/20116101}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116101/} }
TY - JOUR AU - I. Brailovsky AU - M. Frankel AU - L. Kagan AU - G. Sivashinsky TI - On Oscillatory Instability in Convective Burning of Gas-Permeable Explosives JO - Mathematical modelling of natural phenomena PY - 2011 SP - 3 EP - 16 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116101/ DO - 10.1051/mmnp/20116101 LA - en ID - MMNP_2011_6_1_a1 ER -
%0 Journal Article %A I. Brailovsky %A M. Frankel %A L. Kagan %A G. Sivashinsky %T On Oscillatory Instability in Convective Burning of Gas-Permeable Explosives %J Mathematical modelling of natural phenomena %D 2011 %P 3-16 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116101/ %R 10.1051/mmnp/20116101 %G en %F MMNP_2011_6_1_a1
I. Brailovsky; M. Frankel; L. Kagan; G. Sivashinsky. On Oscillatory Instability in Convective Burning of Gas-Permeable Explosives. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 3-16. doi : 10.1051/mmnp/20116101. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116101/
[1] Transition of the burning of explosives into an explosion Russ. J. Phys. Chem. 1963 695 699
,[2] K. K. Andreev, A. F. Belyaev. Theory of Explosive Substances. Transi., US Department of Commerce Report AD-643597 (1966).
[3] Two Routes to Chaos in Condensed Phase Combustion SIAM J. Appl. Math. 1990 437 59
,[4] A. F. Belyaev, V. K. Bobolev, A. I. Korotkov, A. A. Sulimov, S. V. Chuiko. Transition from Deflagration to Detonation in Condensed Phases. Israel Program for Scientific Translations, Jerusalem (1975).
[5] Effects of a flexible boundary on hydrodynamic stability J. Fluid Mechanics 1960 513 532
[6] Galloping and spinning modes of subsonic detonation Combust. Theory Modelling 2000 47 60
, ,[7] Theory of gaseous detonations Chaos 2004 825 38
[8] On the Dynamics of Equations Describing Gasless Combustion in Condensed Systems Combsut. Sci. Technol. 1989 101 11
, ,[9] Burning of porous condensed systems and powders Combust.Expl. Shock Waves 1974 730 736
, , , , , ,[10] Nature of and laws governing quasi-steady-state pulsed convective combustion Combust. Expl. Shock Waves 1980 266 274
, , , , ,[11] Fluid flow through packed columnes Chem. Engr. Prog. 1952 89 94
[12] Transition from laminar burning for porous crystalline explosives Proc. Seventh Symp. (Int.) on Detonation 1981 164 174
,[13] Complex dynamics generated by a sharp interface model of self-propagating high-temperature synthesis Combust. Theory Modelling 1998 479 96
, ,[14] A high-porosity limit for the transition from conductive to convective burning in gas-permeable explosives Combust.Flame 2010 357 362
,[15] The transition to nonsteady deflagration in gasless combustion Prog. Energy Combust. Sci. 1991 135 62
[16] Stability of Quasi-Steady Deflagrations in Confined Porous Energetic Materials Combust. Sci.Technol. 2000 259 316
, ,[17] Finite-rate interphase heat-transfer effects on multiphase burning in confined porous propellants Combust. Sci. Technol. 2006 1685 1720
, ,Cité par Sources :