On Oscillatory Instability in Convective Burning of Gas-Permeable Explosives
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 3-16.

Voir la notice de l'article provenant de la source EDP Sciences

The experimentally known phenomenon of oscillatory instability in convective burning of porous explosives is discussed. A simple phenomenological model accounting for the ejection of unburned particles from the consolidated charge is formulated and analyzed. It is shown that the post-front hydraulic resistance induced by the ejected particles provides a mechanism for the oscillatory burning.
DOI : 10.1051/mmnp/20116101

I. Brailovsky 1 ; M. Frankel 2 ; L. Kagan 1 ; G. Sivashinsky 1

1 School of Mathematical Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
2 Department of Mathematical Sciences, Indiana University – Purdue University, Indianapolis, IN, 46202, USA
@article{MMNP_2011_6_1_a1,
     author = {I. Brailovsky and M. Frankel and L. Kagan and G. Sivashinsky},
     title = {On {Oscillatory} {Instability} in {Convective} {Burning} of {Gas-Permeable} {Explosives}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2011},
     doi = {10.1051/mmnp/20116101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116101/}
}
TY  - JOUR
AU  - I. Brailovsky
AU  - M. Frankel
AU  - L. Kagan
AU  - G. Sivashinsky
TI  - On Oscillatory Instability in Convective Burning of Gas-Permeable Explosives
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 3
EP  - 16
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116101/
DO  - 10.1051/mmnp/20116101
LA  - en
ID  - MMNP_2011_6_1_a1
ER  - 
%0 Journal Article
%A I. Brailovsky
%A M. Frankel
%A L. Kagan
%A G. Sivashinsky
%T On Oscillatory Instability in Convective Burning of Gas-Permeable Explosives
%J Mathematical modelling of natural phenomena
%D 2011
%P 3-16
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116101/
%R 10.1051/mmnp/20116101
%G en
%F MMNP_2011_6_1_a1
I. Brailovsky; M. Frankel; L. Kagan; G. Sivashinsky. On Oscillatory Instability in Convective Burning of Gas-Permeable Explosives. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 3-16. doi : 10.1051/mmnp/20116101. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116101/

[1] K. K. Andreev, S. V. Chuiko Transition of the burning of explosives into an explosion Russ. J. Phys. Chem. 1963 695 699

[2] K. K. Andreev, A. F. Belyaev. Theory of Explosive Substances. Transi., US Department of Commerce Report AD-643597 (1966).

[3] A. Bayliss, B. Matkowsky Two Routes to Chaos in Condensed Phase Combustion SIAM J. Appl. Math. 1990 437 59

[4] A. F. Belyaev, V. K. Bobolev, A. I. Korotkov, A. A. Sulimov, S. V. Chuiko. Transition from Deflagration to Detonation in Condensed Phases. Israel Program for Scientific Translations, Jerusalem (1975).

[5] T. B. Benjamin Effects of a flexible boundary on hydrodynamic stability J. Fluid Mechanics 1960 513 532

[6] I. Brailovsky, M. Frankel, G. Sivashinsky Galloping and spinning modes of subsonic detonation Combust. Theory Modelling 2000 47 60

[7] P. Clavin Theory of gaseous detonations Chaos 2004 825 38

[8] P. Dimitriou, J. Puszynski, V. Hlavacek On the Dynamics of Equations Describing Gasless Combustion in Condensed Systems Combsut. Sci. Technol. 1989 101 11

[9] V. F. Dubovitskii, V. G. Korostelev, A. I. Korotkov, Yu. V. Frolov, A. N. Firsov, K. G. Shkadinsky, S. V. Khomik Burning of porous condensed systems and powders Combust.Expl. Shock Waves 1974 730 736

[10] B. S. Ermolaev, A. A. Sulimov, V. A. Foteenkov, V. E.Khrapovskii, A. I. Korotkov, A. A. Borisov Nature of and laws governing quasi-steady-state pulsed convective combustion Combust. Expl. Shock Waves 1980 266 274

[11] S. Ergun Fluid flow through packed columnes Chem. Engr. Prog. 1952 89 94

[12] R. A. Fifer, F. F. Cole Transition from laminar burning for porous crystalline explosives Proc. Seventh Symp. (Int.) on Detonation 1981 164 174

[13] M. Frankel, V. Roytburd, G. Sivashinsky Complex dynamics generated by a sharp interface model of self-propagating high-temperature synthesis Combust. Theory Modelling 1998 479 96

[14] L. Kagan, G. Sivashinsky A high-porosity limit for the transition from conductive to convective burning in gas-permeable explosives Combust.Flame 2010 357 362

[15] S. B. Margolis The transition to nonsteady deflagration in gasless combustion Prog. Energy Combust. Sci. 1991 135 62

[16] A. M. Telengator, S. B. Margolis, F. A. Williams Stability of Quasi-Steady Deflagrations in Confined Porous Energetic Materials Combust. Sci.Technol. 2000 259 316

[17] A. M. Telengator, F. A. Williams, S. B. Margolis Finite-rate interphase heat-transfer effects on multiphase burning in confined porous propellants Combust. Sci. Technol. 2006 1685 1720

Cité par Sources :