Voir la notice de l'article provenant de la source EDP Sciences
@article{10_1051_mmnp_20105708,
author = {S. Belhaj},
title = {Block {Factorization} of {Hankel} {Matrices} and {Euclidean} {Algorithm}},
journal = {Mathematical modelling of natural phenomena},
pages = {48--54},
publisher = {mathdoc},
volume = {5},
number = {7 Supplement},
year = {2010},
doi = {10.1051/mmnp/20105708},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105708/}
}
TY - JOUR AU - S. Belhaj TI - Block Factorization of Hankel Matrices and Euclidean Algorithm JO - Mathematical modelling of natural phenomena PY - 2010 SP - 48 EP - 54 VL - 5 IS - 7 Supplement PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105708/ DO - 10.1051/mmnp/20105708 LA - en ID - 10_1051_mmnp_20105708 ER -
%0 Journal Article %A S. Belhaj %T Block Factorization of Hankel Matrices and Euclidean Algorithm %J Mathematical modelling of natural phenomena %D 2010 %P 48-54 %V 5 %N 7 Supplement %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105708/ %R 10.1051/mmnp/20105708 %G en %F 10_1051_mmnp_20105708
S. Belhaj. Block Factorization of Hankel Matrices and Euclidean Algorithm. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 48-54. doi: 10.1051/mmnp/20105708
[1] A fast method to block-diagonalize a Hankel matrix Numer Algor 2008 15 34
[2] S. Belhaj. Block diagonalization of Hankel and Bézout matrices : connection with the Euclidean algorithm, submitted.
[3] , Block diagonalization and LU-equivalence of Hankel matrices Linear Algebra and its Applications 2006 247 269
[4] D. Bini, L. Gemignani. On the Euclidean scheme for polynomials having interlaced real zeros. Proc. 2nd ann. ACM symp. on parallel algorithms and architectures, Crete, (1990), 254-258.
[5] , Fast parallel computation of the polynomial remainder sequence via Bézout and Hankel matrices SIAM J. Comput. 1995 63 77
[6] , , Fast parallel matrix and gcd computation Information and Control 1982 241 256
[7] , Block LU factorization of Hankel and Bezout matrices and Euclidean algorithm Int. J. Comput. Math. 2009 135 149
[8] , On partial realization problem Linear Algebra Appl. 1983 277 319
[9] G. Heining, K. Rost. Algebraic methods for Toeplitz-like matrices and operators. Birkhäuser Verlag, Basel, 1984.
Cité par Sources :