Block Factorization of Hankel Matrices and Euclidean Algorithm
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 48-54.

Voir la notice de l'article provenant de la source EDP Sciences

It is shown that a real Hankel matrix admits an approximate block diagonalization in which the successive transformation matrices are upper triangular Toeplitz matrices. The structure of this factorization was first fully discussed in [1]. This approach is extended to obtain the quotients and the remainders appearing in the Euclidean algorithm applied to two polynomials u(x) and v(x) of degree n and m, respectively, whith m n
DOI : 10.1051/mmnp/20105708

S. Belhaj 1, 2

1 Laboratoire de Mathématiques, CNRS UMR 6623, Université de Franche-Comté 25030 Besançon cedex, France
2 Laboratoire LAMSIN, Ecole Nationale d’Ingénieurs de Tunis BP 37, 1002 Tunis Belvédère, Tunisie
@article{MMNP_2010_5_7_Supplement_a8,
     author = {S. Belhaj},
     title = {Block {Factorization} of {Hankel} {Matrices} and {Euclidean} {Algorithm}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {48--54},
     publisher = {mathdoc},
     volume = {5},
     number = {7 Supplement},
     year = {2010},
     doi = {10.1051/mmnp/20105708},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105708/}
}
TY  - JOUR
AU  - S. Belhaj
TI  - Block Factorization of Hankel Matrices and Euclidean Algorithm
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 48
EP  - 54
VL  - 5
IS  - 7 Supplement
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105708/
DO  - 10.1051/mmnp/20105708
LA  - en
ID  - MMNP_2010_5_7_Supplement_a8
ER  - 
%0 Journal Article
%A S. Belhaj
%T Block Factorization of Hankel Matrices and Euclidean Algorithm
%J Mathematical modelling of natural phenomena
%D 2010
%P 48-54
%V 5
%N 7 Supplement
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105708/
%R 10.1051/mmnp/20105708
%G en
%F MMNP_2010_5_7_Supplement_a8
S. Belhaj. Block Factorization of Hankel Matrices and Euclidean Algorithm. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 48-54. doi : 10.1051/mmnp/20105708. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105708/

[1] S. Belhaj A fast method to block-diagonalize a Hankel matrix Numer Algor 2008 15 34

[2] S. Belhaj. Block diagonalization of Hankel and Bézout matrices : connection with the Euclidean algorithm, submitted.

[3] N. Ben Atti, G.M. Diaz-Toca Block diagonalization and LU-equivalence of Hankel matrices Linear Algebra and its Applications 2006 247 269

[4] D. Bini, L. Gemignani. On the Euclidean scheme for polynomials having interlaced real zeros. Proc. 2nd ann. ACM symp. on parallel algorithms and architectures, Crete, (1990), 254-258.

[5] D. Bini, L. Gemignani Fast parallel computation of the polynomial remainder sequence via Bézout and Hankel matrices SIAM J. Comput. 1995 63 77

[6] A. Borodin, J. Vonzurgathen, J. Hopcroft Fast parallel matrix and gcd computation Information and Control 1982 241 256

[7] G. Diaz-Toca, N. Ben Atti Block LU factorization of Hankel and Bezout matrices and Euclidean algorithm Int. J. Comput. Math. 2009 135 149

[8] W. B. Gragg, A. Lindquist On partial realization problem Linear Algebra Appl. 1983 277 319

[9] G. Heining, K. Rost. Algebraic methods for Toeplitz-like matrices and operators. Birkhäuser Verlag, Basel, 1984.

Cité par Sources :