Particle Dynamics Modelling of Cell Populations
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 42-47
Voir la notice de l'article provenant de la source EDP Sciences
Evolution of cell populations can be described with dissipative particle dynamics, where each cell moves according to the balance of forces acting on it, or with partial differential equations, where cell population is considered as a continuous medium. We compare these two approaches for some model examples
Affiliations des auteurs :
N. Bessonov 1, 2 ; P. Kurbatova 2 ; V. Volpert 2
@article{10_1051_mmnp_20105707,
author = {N. Bessonov and P. Kurbatova and V. Volpert},
title = {Particle {Dynamics} {Modelling} of {Cell} {Populations}},
journal = {Mathematical modelling of natural phenomena},
pages = {42--47},
publisher = {mathdoc},
volume = {5},
number = {7 Supplement},
year = {2010},
doi = {10.1051/mmnp/20105707},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105707/}
}
TY - JOUR AU - N. Bessonov AU - P. Kurbatova AU - V. Volpert TI - Particle Dynamics Modelling of Cell Populations JO - Mathematical modelling of natural phenomena PY - 2010 SP - 42 EP - 47 VL - 5 IS - 7 Supplement PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105707/ DO - 10.1051/mmnp/20105707 LA - en ID - 10_1051_mmnp_20105707 ER -
%0 Journal Article %A N. Bessonov %A P. Kurbatova %A V. Volpert %T Particle Dynamics Modelling of Cell Populations %J Mathematical modelling of natural phenomena %D 2010 %P 42-47 %V 5 %N 7 Supplement %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105707/ %R 10.1051/mmnp/20105707 %G en %F 10_1051_mmnp_20105707
N. Bessonov; P. Kurbatova; V. Volpert. Particle Dynamics Modelling of Cell Populations. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 42-47. doi: 10.1051/mmnp/20105707
[1] M. Karttunen, I. Vattulainen, A. Lukkarinen. A novel methods in soft matter simulations. Springer, Berlin, 2004.
[2] , , Cell modelling of hematopoiesis Math. Model. Nat. Phenom. 2006 81 103
Cité par Sources :