Voir la notice de l'article provenant de la source EDP Sciences
S. Bowong 1, 2, 3 ; J. Kurths 2, 4
@article{10_1051_mmnp_20105610,
author = {S. Bowong and J. Kurths},
title = {Modelling {Tuberculosis} and {Hepatitis} {B} {Co-infections}},
journal = {Mathematical modelling of natural phenomena},
pages = {196--242},
publisher = {mathdoc},
volume = {5},
number = {6},
year = {2010},
doi = {10.1051/mmnp/20105610},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105610/}
}
TY - JOUR AU - S. Bowong AU - J. Kurths TI - Modelling Tuberculosis and Hepatitis B Co-infections JO - Mathematical modelling of natural phenomena PY - 2010 SP - 196 EP - 242 VL - 5 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105610/ DO - 10.1051/mmnp/20105610 LA - en ID - 10_1051_mmnp_20105610 ER -
%0 Journal Article %A S. Bowong %A J. Kurths %T Modelling Tuberculosis and Hepatitis B Co-infections %J Mathematical modelling of natural phenomena %D 2010 %P 196-242 %V 5 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105610/ %R 10.1051/mmnp/20105610 %G en %F 10_1051_mmnp_20105610
S. Bowong; J. Kurths. Modelling Tuberculosis and Hepatitis B Co-infections. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 196-242. doi: 10.1051/mmnp/20105610
[1] Global Fund to Fight AIDS, Tuberculosis, and Malaria. Fighting Tuberculosis. Geneva, Switzerland: (2006). Retrieved September 9, 2006, http://www.theglobalfund.org/en/about/tuberculosis/default.asp, 2006.
[2] World Health Organization. Global tuberculosis control: surveillance, planning, financing. Geneva, Switzerland: World Health Organization, 2009.
[3] WHO. Hepatitis B. /http://www.who.int/mediacentre/factsheets/fs204/en/ index.htmlS, revised August 2008, 2008.
[4] , Eliminating human tuberculosis in the twenty-first century J. R. Soc. Interface 2008 653 662
[5] , An African perspective of tuberculosis and HIV/AIDS Lancet 1999 997 1005
[6] Global challenges in liver disease Hepatol. 2006 521 526
[7] , Tuberculosis control: past 10 years and future progress Tuberculosis 2003 82 85
[8] , Will DOTS do it? A reappraisal of tuberculosis control in countries with high rates of HIV infection Int. J. Tuberc. Lung Dis. 1999 457 465
[9] Global Fund Against AIDS, TB and Malaria. The Global Tuberculosis Epidemic, Geneva, Switzerland, 2004.
[10] Hepatitis B virus epidemiology, disease burden, treatment and current and emerging prevention and control measures J. Viral. Hepat. 2004 97 107
[11] , , The transmission dynamics and control of hepatitis B virus in the Gambia Stat. Med. 1996 2215 2233
[12] , , Vaccination against hepatitis B virus in highly endemic area: waning vaccine-induced immunity and the need for booster doses Trans. R. Soc. Trop. Med. Hyg. 1996 436 440
[13] , , , , The influence of age on the development of the hepatitis B carrier state Proc. R. Soc. Lond. B 1993 197 201
[14] , , , , Epidemiological patterns of hepatitis B virus (HBV) in highly endemic areas Epidemiol. Infect. 1996 313 325
[15] , , , , , A mathematical model to estimate global hepatitis B disease burden and vaccination impact Int. J. Epidemiol. 2005 1329 1339
[16] , , , , Incidence and routes of transmission of hepatitis B virus in England and Wales, 1995-2000:implications for immunisation policy J. Clin. Virol. 2004 211 220
[17] , , Epidemiology and prevention of hepatitis B virus infection Int. J. Med. Sci. 2005 50 57
[18] Risks of chronicity following acute hepatitis B virus infection: a review Clin. Infect. Dis. 1995 992 1000
[19] , The overview of the seminar on chronic hepatitis B Chin. J. Hepatol. 2004 698 699
[20] Hepatitis B virus epidemiology, disease burden, treatment and current and emerging prevention and control measures J. Viral. Hepat. 2004 97 107
[21] , , , , , , High prevalence of hepatitis B virus among tuberculosis patients with and without HIV in Rio de Janeiro, Brazil Eur. Soc. Clin. Micro. 2005 41 43
[22] M.H. Kuniholm, J. Mark, M. Aladashvili, N. Shubladze, G. Khechinashvili, T. Tsertsvadze, C. del Rio, K.E. Nelson. Risk factors and algorithms to identify hepatitis C, hepatitis B, and HIV among Georgian tuberculosis patients. Int. Soc. Inf. Dis., (2007) doi: 10.1016/j.ijid.2007.04.015.
[23] , , , , , , Tuberculosis and Chronic Hepatitis B Virus Infection in Africans and Variation in the Vitamin D Receptor Gene J. Inf. Dis. 1999 721 724
[24] , , , , Prevalence of tuberculosis, hepatitis B virus, and intestinal parasitic infections among refugees to Minnesota Public Health Rep. 2002 69 77
[25] , , Immune responses to hepatitis B virus and tuberculosis infections in Southeast Asian refugees Amer. J. Epide. 1985 1032 1036
[26] , Prevalence and interaction of hepatitis B and latent tuberculosis in Vietnamese immigrants to the United States Amer. J. Gastr. 2002 1198 1203
[27] Treatment Of Tuberculosis In Patients With Hepatitis Hong Kong Practitioner 1997 6 13
[28] , A contribution to the mathematical theory of epidemics Proc. Roy. Soc. 1927 700 721
[29] R.M. Anderson, R.M. May. Infectious Disease of Humans: Dynamics and Control. Oxford University Press, London/New York, 1992.
[30] , On a basic model of a two-disease epidemic Appl. Math. Comput. 2005 177 187
[31] , Modelling and analysis of HIV-TB co-infection in a variable size population Math. Model. Anal. 2005 275 286
[32] , , Controlling Co-epidemic: Analysis of HIV and tuberculosis infection analysis Oper. Res. 2008 1366 1381
[33] , , , , Modelling the joint epidemics of TB and HIV in a South African township J. Math. Biol. 2008 557 593
[34] , , , Mathematical analysis of the transmission dynamics of HIV/TB co-infection in the presence of treatment Math. Biosci. Eng. 2008 145 174
[35] , , , Mathematical analysis of a model for HIV-malaria co-infection Math. Biosci. Engr. 2009 333 362
[36] , , A mathematical analysis of malaria and tuberculosis co-dynamics Dis. Cont. Dyn. Syst. Series B 2009 827 864
[37] , , Modelling TB and HIV co-infections Math. Bios. Eng. 2009 815 837
[38] , Mathematical analysis of a tuberculosis model with differential infectivity Com. Non. Sci. Num. Sim. 2009 4010 4021
[39] , , , , Incidence and routes of transmission of hepatitis B virus in England and Wales, 1995-2000: implications for immunization policy J. Clin. Virol. 2004 211 220
[40] C. Dye, S. Schele. For the WHO global surveillance and monitoring project. Global burden of tuberculosis estimated incidence, prevalence and mortality by country. 282 (1999), 677-686.
[41] National Committee of Fight Against Tuberculosis. Guide de personnel de la santé, Cameroon, 2008.
[42] National Institute of Statistics. Evolution des systèmes statistiques nationaux, Cameroon, 2007.
[43] G. Birkhoff, G. C. Rota. Ordinary Differential Equations. 4th edition, John Wiley Sons, Inc., New York, 1989.
[44] , Permanence and the dynamics of biological systems Math. Biosci. 1992 1 71
[45] The mathematics of infectious disease SIAM Review 2000 599 653
[46] , , , , Hepatitis B virus infection: epidemiology and vaccination Epidemiol. Rev. 2006 112 125
[47] V. Lakshmikantham, S. Leela, A. Martynyuk. Stability Analysis of Nonlinear Systems. Marcel Dekker Inc., New York and Basel, pp. 31, 1989.
[48] H.L. Smith, P. Waltman. The Theory of the Chemostat. Cambridge University Press, 1995.
[49] Comparison theorems on boundedness Funkcial. Ekvac. 1988 179 196
[50] Modelling the effect of imperfect vaccines on disease epidemiology Dis. Cont. Dynam. Syst. Series B 2004 999 1012
[51] , , On the definition and computation of the basic reproduction ratio R0 in the model of infectious disease in heterogeneous populations J. Math. Biol. 1990 265 382
[52] , Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Math. Bios. 2002 29 28
[53] J.P. LaSalle. The stability of dynamical systems. Society for Industrial and Applied Mathematics, Philadelphia, Pa, 1976.
[54] Stability theory for ordinary differential equations J. Differ. Equ. 1968 57 65
[55] N.P. Bhatia, G.P. Szegö. Stability Theory of Dynamical Systems. Springer-Verlag, 1970.
[56] J. Carr. Applications Centre Manifold Theory. Springer-Verlag, New York, 1981.
[57] , Dynamical models of tuberculosis and their applications Math. Bios. Eng. 2004 361 404
[58] , , Backwards bifurcations and catastrophe in simple models of fatal diseases J. Math. Biol. 1998 227 248
[59] , , Global result for an epidemic model with vaccination that exihibits backward bifurcation J. Appl. Math. 2003 260 276
[60] Backward bifurcation in simple vaccination models J. Math. Ana. Appl. 2004 418 431
[61] , , A model for tuberculosis with exogenous reinfection Theor. Pop. Biol. 2000 235 247
[62] , Exogenous reinfection in tuberculosis Lancet Infect. Dis. 2005 629 636
[63] , , Backward bifurcation in dengue transmission dynamics Math. Bios. 2008 11 25
[64] , , , , Role of incidence function in vaccine-induced backward bifurcation in some HIV models Math. Biosci. 2007 436 463
[65] F. Brauer, C. Castillo-Chavez. Mathematical Models in Population Biology and Epidemiology. Text in Applied Mathematics Series, 40, Springer-Verlag, New York, 2001.
[66] , , Comparing epidemic tuberculosis in demographically distinct populations Maths. Biosci. 2002 161 185
Cité par Sources :