Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_6_a8, author = {N. C. Apreutesei}, title = {An {Optimal} {Control} {Problem} for a {Predator-Prey} {Reaction-Diffusion} {System}}, journal = {Mathematical modelling of natural phenomena}, pages = {180--195}, publisher = {mathdoc}, volume = {5}, number = {6}, year = {2010}, doi = {10.1051/mmnp/20105609}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105609/} }
TY - JOUR AU - N. C. Apreutesei TI - An Optimal Control Problem for a Predator-Prey Reaction-Diffusion System JO - Mathematical modelling of natural phenomena PY - 2010 SP - 180 EP - 195 VL - 5 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105609/ DO - 10.1051/mmnp/20105609 LA - en ID - MMNP_2010_5_6_a8 ER -
%0 Journal Article %A N. C. Apreutesei %T An Optimal Control Problem for a Predator-Prey Reaction-Diffusion System %J Mathematical modelling of natural phenomena %D 2010 %P 180-195 %V 5 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105609/ %R 10.1051/mmnp/20105609 %G en %F MMNP_2010_5_6_a8
N. C. Apreutesei. An Optimal Control Problem for a Predator-Prey Reaction-Diffusion System. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 180-195. doi : 10.1051/mmnp/20105609. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105609/
[1] Necessary optimality conditions for a Lotka-Volterra three species system Math. Model. Nat. Phen. 2006 123 135
[2] An optimal control problem for prey-predator system with a general functional response Appl. Math. Letters 2009 1062 1065
[3] V. Barbu. Mathematical methods in optimization of differential systems. Kluwer Academic Publishers, Dordrecht, 1994.
[4] Optimality conditions for age-structured control systems J. Math. Anal. Appl. 2003 47 68
, ,[5] Optimal control of a nutrient-phytoplankton-zooplankton-fish system SIAM J. Control Optim. 2007 775 791
,[6] Double control problems of age-distributed population dynamics Nonlinear Anal., Real World Appl. 2009 3112 3121
, ,[7] An optimal control problem for the Lotka-Volterra system with diffusion Panam. Math. J. 2002 23 46
[8] Maximum principle for optimal harvesting in linear size-structured population Math. Popul. Stud. 2008 123 136
[9] Some mechanistically derived population models Math. Biosci. Eng. 2007 1 11
[10] J. D. Murray. Mathematical Biology. Springer Verlag, Berlin-Heidelberg-New York, third edition, 2002.
[11] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 44. New York etc., Springer- Verlag, 1983.
[12] Existence of global solutions for a predator-prey model with cross-diffusion Electron. J. Diff. Eqns. 2008 1 14
[13] Optimal control of prey-predator systems with Lagrange type and Bolza type cost functionals Proc. Faculty Science Tokai Univ. 1983 103 118
Cité par Sources :