An Optimal Control Problem for a Predator-Prey Reaction-Diffusion System
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 180-195.

Voir la notice de l'article provenant de la source EDP Sciences

An optimal control problem is studied for a predator-prey system of PDE, with a logistic growth rate of the prey and a general functional response of the predator. The control function has two components. The purpose is to maximize a mean density of the two species in their habitat. The existence of the optimal solution is analyzed and some necessary optimality conditions are established. The form of the optimal control is found in some particular cases.
DOI : 10.1051/mmnp/20105609

N. C. Apreutesei 1

1 Department of Mathematics, Technical University "Gh. Asachi" Iasi, 11, Bd. Carol I 700506 Iasi, Romania
@article{MMNP_2010_5_6_a8,
     author = {N. C. Apreutesei},
     title = {An {Optimal} {Control} {Problem} for a {Predator-Prey} {Reaction-Diffusion} {System}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {180--195},
     publisher = {mathdoc},
     volume = {5},
     number = {6},
     year = {2010},
     doi = {10.1051/mmnp/20105609},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105609/}
}
TY  - JOUR
AU  - N. C. Apreutesei
TI  - An Optimal Control Problem for a Predator-Prey Reaction-Diffusion System
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 180
EP  - 195
VL  - 5
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105609/
DO  - 10.1051/mmnp/20105609
LA  - en
ID  - MMNP_2010_5_6_a8
ER  - 
%0 Journal Article
%A N. C. Apreutesei
%T An Optimal Control Problem for a Predator-Prey Reaction-Diffusion System
%J Mathematical modelling of natural phenomena
%D 2010
%P 180-195
%V 5
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105609/
%R 10.1051/mmnp/20105609
%G en
%F MMNP_2010_5_6_a8
N. C. Apreutesei. An Optimal Control Problem for a Predator-Prey Reaction-Diffusion System. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 180-195. doi : 10.1051/mmnp/20105609. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105609/

[1] N. Apreutesei Necessary optimality conditions for a Lotka-Volterra three species system Math. Model. Nat. Phen. 2006 123 135

[2] N. Apreutesei An optimal control problem for prey-predator system with a general functional response Appl. Math. Letters 2009 1062 1065

[3] V. Barbu. Mathematical methods in optimization of differential systems. Kluwer Academic Publishers, Dordrecht, 1994.

[4] G. Feichtinger, G. Tragler, V. Veliov Optimality conditions for age-structured control systems J. Math. Anal. Appl. 2003 47 68

[5] M. Garvie, C. Trenchea Optimal control of a nutrient-phytoplankton-zooplankton-fish system SIAM J. Control Optim. 2007 775 791

[6] Z. He, S. Hong, C. Zhang Double control problems of age-distributed population dynamics Nonlinear Anal., Real World Appl. 2009 3112 3121

[7] I. Hrinca An optimal control problem for the Lotka-Volterra system with diffusion Panam. Math. J. 2002 23 46

[8] N. Kato Maximum principle for optimal harvesting in linear size-structured population Math. Popul. Stud. 2008 123 136

[9] Y. Kuang Some mechanistically derived population models Math. Biosci. Eng. 2007 1 11

[10] J. D. Murray. Mathematical Biology. Springer Verlag, Berlin-Heidelberg-New York, third edition, 2002.

[11] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 44. New York etc., Springer- Verlag, 1983.

[12] S. Xu Existence of global solutions for a predator-prey model with cross-diffusion Electron. J. Diff. Eqns. 2008 1 14

[13] S. Yosida Optimal control of prey-predator systems with Lagrange type and Bolza type cost functionals Proc. Faculty Science Tokai Univ. 1983 103 118

Cité par Sources :