A Model of Large-Scale Evolution of Complex Food Webs
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 139-158.

Voir la notice de l'article provenant de la source EDP Sciences

A simple model of biological evolution of community food webs is introduced. This model is based on the niche model, which is known to generate model food webs that are very similar to empirical food webs. The networks evolve by speciation and extinction. Co-extinctions due to the loss of all prey species are found to play a major role in determining the longterm shape of the food webs. The central aim is to design the model such that the characteristic parameters of the niche model food webs remain in realistic intervals. When the mutation rule is chosen accordingly, it is found that food webs with a complex, biologically meaningful structure emerge and that the statistics of extinction events agrees well with that observed in the paleontological data.
DOI : 10.1051/mmnp/20105607

C. Guill 1

1 Institute of Condensed Matter Physics, Darmstadt University of Technology Hochschulstraße 6, D-64289 Darmstadt, Germany
@article{MMNP_2010_5_6_a6,
     author = {C. Guill},
     title = {A {Model} of {Large-Scale} {Evolution} of {Complex} {Food} {Webs}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {139--158},
     publisher = {mathdoc},
     volume = {5},
     number = {6},
     year = {2010},
     doi = {10.1051/mmnp/20105607},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105607/}
}
TY  - JOUR
AU  - C. Guill
TI  - A Model of Large-Scale Evolution of Complex Food Webs
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 139
EP  - 158
VL  - 5
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105607/
DO  - 10.1051/mmnp/20105607
LA  - en
ID  - MMNP_2010_5_6_a6
ER  - 
%0 Journal Article
%A C. Guill
%T A Model of Large-Scale Evolution of Complex Food Webs
%J Mathematical modelling of natural phenomena
%D 2010
%P 139-158
%V 5
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105607/
%R 10.1051/mmnp/20105607
%G en
%F MMNP_2010_5_6_a6
C. Guill. A Model of Large-Scale Evolution of Complex Food Webs. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 139-158. doi : 10.1051/mmnp/20105607. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105607/

[1] J. Alroy Cope’s rule and the dynamics of body mass evolution in north american fossil mammals Science 1998 731 734

[2] L.A. Nunes Amaral, M. Meyer Environmental changes, coextinction, and patterns in the fossil record Phys. Rev. Lett. 1999 652 655

[3] P. Bak, K. Sneppen Punctuated equilibrium and criticality in a simple model of evolution Phys. Rev. Lett. 1993 4083 4086

[4] U. Brose Consumer-resource body-size relationships in natural food webs Ecology 2006

[5] J. Camacho, R. Guimerà, L.A. Nunes Amaral Analytical solution of a model for complex food webs Phys. Rev. E 2002

[6] J. Camacho, R. Guimerà, L.A. Nunes Amaral Robust patterns in food web structure Phys. Rev. Lett. 2002

[7] M.-F. Cattin, L.-F. Bersier, C. Banašek-Richter, R. Baltensperger, J.-P. Gabriel Phylogenetic constraints and adaptation explain food-web structure Nature 2004 835 839

[8] K. Christensen, S.A. Di Collobiano, M. Hall, H.J. Jenssen Tangled Nature: A model of evolutionary ecology J. Theor. Biol. 2002 73 84

[9] A. Clauset, D.E. Erwin The evolution and distribution of species body size Science 2008 399 401

[10] J.E. Cohen, S.L. Pimm, P. Yodzis, J. Saldaña Body sizes of animal predators and animal prey in food webs J. Anim. Ecol. 1993 67 78

[11] B. Drossel Extinction events and species lifetimes in a simple ecological model Phys. Rev. Lett. 1998 5011 5014

[12] B. Drossel Biological evolution and statistical physics Adv. Phys. 2001 209 295

[13] B. Drossel, P.G. Higgs, A.J. Mckane The influence of predator-prey dynamics on the long-term evolution of food web structure J. Theor. Biol. 2001 91 107

[14] B. Drossel, A.J. Mckane, C. Quince The impact of nonlinear functional responses on the long-term evolution of food web structure J. Theor. Biol. 2004 539 548

[15] J.A. Dunne, R.J. Williams, N.D. Martinez Network structure and robustness of marine food webs Mar. Ecol. Prog. Ser. 2004 291 302

[16] N. Eldredge, S.J. Gould. In: Models in Paleobiology, Schopf, T.J.M. (Ed.), Freeman, San Francisco, 1972.

[17] J.L. Garcia-Domingo, J. Saldaña Food-web complexity emerging from ecological dynamics on adaptive networks J. Theor. Biol. 2007 819 826

[18] S.J. Gould, N. Eldredge Punctuated equilibrium comes of age Nature 1993 223 227

[19] C. Guill, B. Drossel Emergence of complexity in evolving niche model food webs J. Theor. Biol. 2008 108 120

[20] G. Hardin The competitive exclusion principle Science 1960 1292 1297

[21] D.W.E. Hone, M.J. Benton The evolution of large size: how does Cope’s rule work? Tr. Ecol. Evol. 2005 4 6

[22] N. Loeuille, M. Loreau Evolutionary emergence of size-structured food webs Proc. Nat. Acad. Sci. 2005 5761 5766

[23] B. Kartascheff, C. Guill, B. Drossel Positive complexity-stability relations in food web models without foraging adaptation J. Theor. Biol. 2009 12 23

[24] S.A. Kauffman, S. Johnsen Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches J. Theor. Biol. 1991 467 505

[25] M. Kondoh Foraging adaptation and the relationship between food-web complexity and stability Science 2003 1388 1391

[26] M. Kondoh Does foraging adaptation create the positive complexity-stability relationship in realistic food-web structure? J. Theor. Biol. 2006 646 651

[27] R.M. May Unanswered questions in ecology Phil. Trans. R. Soc. Lond. B 1999 1951 1959

[28] M.E.J. Newman Self-organized criticality, evolution and the fossil extinction record Proc. R. Soc. Lond. B 1996 1605 1610

[29] M.E.J. Newman A model of mass extinction J. Theor. Biol. 1997 235 252

[30] M.E.J. Newman, R.G. Palmer. Models of Extinction: A Review. arXiv:adap-org/ 9908002v1 (1999).

[31] M. Paczuski, S. Maslov, P. Bak Avalanche dynamics in evolution, growth, and depinning models Phys. Rev. E 1996 414 443

[32] D.M. Raup Biological extinction in earth history Science 1986 1528 1533

[33] D.M. Raup A kill curve for phanerozoic marine species Paleobiology 1991 37 48

[34] P.A. Rikvold Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution J. Math. Biol. 2007 653 677

[35] P.A. Rikvold, V. Sevim Individual-based predator-prey model for biological coevolution: Fluctuations, stability, and community structure Phys. Rev. E 2007

[36] P.A. Rikvold. Complex dynamics in coevolution models with ratio-dependent functional response. Ecol. Comp. (2009), in press.

[37] A.G. Rossberg, H. Matsuda, T. Amemiya, K. Itoh An explanatory model for food-web structure and evolution Ecol. Comp. 2005 312 321

[38] A.G. Rossberg, H. Matsuda, T. Amemiya, K. Itoh Food webs: Experts consuming families of experts J. Theor. Biol. 2006 552 563

[39] A.G. Rossberg, R. Ishii, T. Amemiya, K. Itoh The top-down mechanism for body-mass-abundance scaling Ecology 2008 567 580

[40] F. Slanina, M. Kotrla Extremal dynamics model on evolving networks Phys. Rev. Lett. 1999 5587 5590

[41] R.V. Solé, J. Bascompte Are critical phenomena relevant to large-scale evolution? Proc. R. Soc. Lond. B 1996 161 168

[42] R.V. Solé, S.C. Manrubia Extinction and self-organized criticality in a model of large-scale evolution Phys. Rev. E 1996 R42 R45

[43] R.V. Solé, S.C. Manrubia, M. Benton, P. Bak Self-similarity of extinction statistics in the fossil record Nature 1997 764 767

[44] D.B. Stouffer, J. Camacho, R. Guimerà, C.A. Ng, L.A. Nunes Amaral Quantitative patterns in the structure of model and empirical food webs Ecology 2005 1301 1311

[45] D.B. Stouffer, J. Camacho, L.A. Nunes Amaral A robust measure of food web intervality Proc. Nat. Acad. Sci. 2006 19015 19020

[46] S. Uchida, B. Drossel, U. Brose The structure of food webs with adaptive behaviour Ecol. Mod. 2007 263 276

[47] P.H. Warren, J.H. Lawton Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure? Oecologia 1987 231 235

[48] E.P. White, B.J. Enquist, J.L. Green On estimating the exponent of power-law frequency distributions Ecology 2008 905 912

[49] R.J. Williams, N.D. Martinez Simple rules yield complex food webs Nature 2000 180 183

[50] R.J. Williams, N.D. Martinez Success and its limits among structural models of complex food webs J. Anim. Ecol. 2008 512 519

Cité par Sources :