Stability of the Endemic Coexistence Equilibrium for One Host and Two Parasites
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 109-138.

Voir la notice de l'article provenant de la source EDP Sciences

For an SI type endemic model with one host and two parasite strains, we study the stability of the endemic coexistence equilibrium, where the host and both parasite strains are present. Our model, which is a system of three ordinary differential equations, assumes complete cross-protection between the parasite strains and reduced fertility and increased mortality of infected hosts. It also assumes that one parasite strain is exclusively vertically transmitted and cannot persists just by itself. We give several sufficient conditions for the equilibrium to be locally asymptotically stable. One of them is that the horizontal transmission is of density-dependent (mass-action) type. If the horizontal transmission is of frequency-dependent (standard) type, we show that, under certain conditions, the equilibrium can be unstable and undamped oscillations can occur. We support and extend our analytical results by numerical simulations and by two-dimensional plots of stability regions for various pairs of parameters.
DOI : 10.1051/mmnp/20105606

T. Dhirasakdanon 1 ; H. R. Thieme 1

1 School of Mathematical and Statistical Sciences Arizona State University, Tempe, AZ 85287-1804, USA
@article{MMNP_2010_5_6_a5,
     author = {T. Dhirasakdanon and H. R. Thieme},
     title = {Stability of the {Endemic} {Coexistence} {Equilibrium} for {One} {Host} and {Two} {Parasites}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {109--138},
     publisher = {mathdoc},
     volume = {5},
     number = {6},
     year = {2010},
     doi = {10.1051/mmnp/20105606},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105606/}
}
TY  - JOUR
AU  - T. Dhirasakdanon
AU  - H. R. Thieme
TI  - Stability of the Endemic Coexistence Equilibrium for One Host and Two Parasites
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 109
EP  - 138
VL  - 5
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105606/
DO  - 10.1051/mmnp/20105606
LA  - en
ID  - MMNP_2010_5_6_a5
ER  - 
%0 Journal Article
%A T. Dhirasakdanon
%A H. R. Thieme
%T Stability of the Endemic Coexistence Equilibrium for One Host and Two Parasites
%J Mathematical modelling of natural phenomena
%D 2010
%P 109-138
%V 5
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105606/
%R 10.1051/mmnp/20105606
%G en
%F MMNP_2010_5_6_a5
T. Dhirasakdanon; H. R. Thieme. Stability of the Endemic Coexistence Equilibrium for One Host and Two Parasites. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 109-138. doi : 10.1051/mmnp/20105606. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105606/

[1] L.J.S. Allen, M. Langlais, C.J. Phillips The dynamics of two viral infections in a single host population with applications to hantavirus Math. Biosci. 2003 191 217

[2] R.M. Anderson, H.C. Jackson, R.M. May, A.D.M. Smith Population dynamics of fox rabies in Europe Nature 1981 765 771

[3] V. Andreasen. Multiple times scales in the dynamics of infectious diseases. Mathematical Approaches to Problems in Resource Management and Epidemiology (C. Castillo-Chavez, S.A. Levin, C.A. Shoemaker, eds.), 142–151, Springer, Berlin Heidelberg, 1989.

[4] V. Andreasen, J. Lin, S.A. Levin The dynamics of cocirculating influenza strains conferring partial cross-immunity J. Math. Biol. 1997 825 842

[5] C. Banerjee, L.J.S. Allen, J. Salazar-Bravo Models for an arenavirus infection in a rodent population: consequences of horizontal, vertical and sexual transmission Math. Biosci. Engin. 2008 617 645

[6] F.B. Bang Epidemiological interference Intern. J. Epidemiology 1975 337 342

[7] C.J. Briggs, H.C.J. Godfray The dynamics of insect-pathogen interactions in stage-structured populations The American Naturalist 1995 855 887

[8] C. Castillo-Chavez, H.W. Hethcote, V. Andreasen, S.A. Levin, W.M. Liu Epidemiological models with age structure, proportionate mixing, and cross-immunity J. Math. Biol. 1989 233 258

[9] T. Dhirasakdanon, H.R. Thieme. Persistence of vertically transmitted parasite strains which protect against more virulent horizontally transmitted strains. Modeling and Dynamics of Infectious Diseases (Z. Ma, Y. Zhou, J. Wu, eds.), 187–215, World Scientific, Singapore, 2009.

[10] O. Diekmann, M. Kretzschmar Patterns in the effects of infectious diseases on population growth J. Math. Biol. 1991 539 570

[11] K. Dietz Epidemiologic interference of virus populations J. Math. Biol. 1979 291 300

[12] K. Dietz. Overall population patterns in the transmission cycle of infectious disease agents. Population Biology of Infectious Diseases (R.M. Anderson, R.M. May, eds.), 87–102, Springer, Dahlem Konferenzen, Berlin, 1982.

[13] S.H. Faeth, K.P. Hadeler, H.R. Thieme An apparent paradox of horizontal and vertical disease transmission J. Biol. Dyn. 2007 45 62

[14] Z. Feng, H.R. Thieme Recurrent outbreaks of childhood diseases revisited: the impact of isolation Math. Biosci. 1995 93 130

[15] Z. Feng, H.R. Thieme Endemic models with arbitrarily distributed periods of infection. II. Fast disease dynamics and permanent recovery SIAM J. Appl. Math. 2000 983 1012

[16] L.Q. Gao, J. Mena-Lorca, H.W. Hethcote. Variations on a theme of SEI endemic models. Differential Equations and Applications to Biology and Industry (M. Martelli, C.L. Cooke, E. Cumberbatch, B. Tang, H.R. Thieme, eds.), 191–207, World Scientific, Singapore, 1996.

[17] W.M. Getz, J. Pickering Epidemic models: thresholds and population regulation The American Naturalist 1983 892 898

[18] D. Greenhalgh Some results for an SEIR epidemic model with density dependence in the death rate IMA J. Math. Appl. Med. Biol. 1992 67 106

[19] D. Greenhalgh Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity Math. Comput. Modelling 1997 85 107

[20] J.V. Greenman, P.J. Hudson Infected coexistence instability with and without density-dependent regulation J. Theor. Biol. 1997 345 356

[21] E.R. Haine Symbiont-mediated protection Proc. R. Soc. B 2008 353 361

[22] H.W. Hethcote, S.A. Levin. Periodicity in epidemiological models. Applied Mathematical Ecology (S.A. Levin, T.G. Hallam, L.J. Gross, eds.), 193–211, Springer, Berlin Heidelberg, 1989.

[23] H.W. Hethcote, H.W. Stech, P. Van Den Driessche Nonlinear oscillations in epidemic models SIAM J. Appl. Math. 1981 1 9

[24] H.W. Hethcote, W. Wang, Y. Li Species coexistence and periodicity in host-host-pathogen models J. Math. Biol. 2005 629 660

[25] H.W. Hethcote, J. Pickering Infectious disease and species coexistence: a model of Lotka-Volterra form Am. Nat. 1985 196 211

[26] M. Iannelli, M. Martcheva, X.-Z. Li Strain replacement in an epidemic model with super-infection and perfect vaccination Math. Biosci. 2005 23 46

[27] J. Li, Y. Zhou, Z. Ma, J.M. Hyman Epidemiological models for mutating pathogens SIAM J. Appl. Math. 2004 1 23

[28] J. Lin, V. Andreasen, S.A. Levin Dynamics of influenza A drift: the linear three-strain model Math. Biosci. 1999 33 51

[29] M. Lipsitch, S. Siller, M.A. Nowak The evolution of virulence in pathogens with vertical and horizontal transmission Evolution 1996 1729 1741

[30] W.-M. Liu Dose-dependent latent period and periodicity of infectious diseases J. Math. Biol. 1993 487 494

[31] C.M. Lively, K. Clay, M.J. Wade, C. Fuqua Competitive co-existence of vertically and horizontally transmitted diseases Evolutionary Ecology Res. 2005 1183 1190

[32] M. Martcheva. On the mechanisms with strain replacement in epidemic models with vaccination. Current Developments in Mathematical Biology (R.C. John Boucher, K. Mahdavi, eds.), 149–165, World Scientific, Hackensack, 2007.

[33] M. Martcheva, S.S. Pilyugin The role of coinfection in multidisease dynamics SIAM J. Appl. Math. 2006 843 872

[34] G. Meijer, A. Leuchtmann The effects of genetic and environmental factors on disease expression (stroma formation) and plant growth in Brachypodium sylvaticum infected by Epichloë sylvatica OIKOS 2000 446 458

[35] F.A. Milner, A. Pugliese Periodic solutions: a robust numerical method for an S-I-R model of epidemics J. Math. Biol. 1999 471 492

[36] M. Nuño, Z. Feng, M. Martcheva, C. Castillo-Chavez Dynamics of two-strain influenza with isolation and partial cross-immunity SIAM J. Appl. Math. 2005 964 982

[37] A. Pugliese. An S→E→I epidemic model with varying population size. Differential Equations Models in Biology, Epidemiology and Ecology (S. Busenberg, M. Martelli, eds.), 121–138, Springer, Berlin Heidelberg, 1991.

[38] K. Saikkonen, S.H. Faeth, M. Helander, T.J. Sullivan Fungal endophytes: a continuum of interactions with host plants Annu. Rev. Ecol. Syst. 1998 319 343

[39] J.H. Swart Hopf bifurcation and stable limit cycle behavior in the spread of infectious disease, with special application to fox rabies Math. Biosci. 1989 199 207

[40] H.R. Thieme. Stability change of the endemic equilibrium in age-structured models for the spread of S-I-R type infectious diseases. Differential Equations Models in Biology, Epidemiology and Ecology (S. Busenberg, M. Martelli, eds.), 139–158, Springer, Berlin Heidelberg, 1991.

[41] H.R. Thieme. Mathematics in Population Biology. Princeton University Press, Princeton, 2003.

[42] H.R. Thieme, C. Castillo-Chavez How may infection-age dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math. 1993 1447 1479

[43] H.R. Thieme, A. Tridane, Y. Kuang An epidemic model with post-contact prophylaxis of distributed length. II. Stability and oscillations if treatment is fully effective Math. Model. Nat. Phenom. 2008 267 293

[44] P. Van Den Driessche, M.L. Zeeman Disease induced oscillations between two competing species SIAM J. Appl. Dyn. Sys. 2004 601 619

[45] E. Venturino The effects of diseases on competing species Math. Biosci. 2001 111 131

Cité par Sources :