Voir la notice de l'article provenant de la source EDP Sciences
T. Dhirasakdanon 1 ; H. R. Thieme 1
@article{MMNP_2010_5_6_a5, author = {T. Dhirasakdanon and H. R. Thieme}, title = {Stability of the {Endemic} {Coexistence} {Equilibrium} for {One} {Host} and {Two} {Parasites}}, journal = {Mathematical modelling of natural phenomena}, pages = {109--138}, publisher = {mathdoc}, volume = {5}, number = {6}, year = {2010}, doi = {10.1051/mmnp/20105606}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105606/} }
TY - JOUR AU - T. Dhirasakdanon AU - H. R. Thieme TI - Stability of the Endemic Coexistence Equilibrium for One Host and Two Parasites JO - Mathematical modelling of natural phenomena PY - 2010 SP - 109 EP - 138 VL - 5 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105606/ DO - 10.1051/mmnp/20105606 LA - en ID - MMNP_2010_5_6_a5 ER -
%0 Journal Article %A T. Dhirasakdanon %A H. R. Thieme %T Stability of the Endemic Coexistence Equilibrium for One Host and Two Parasites %J Mathematical modelling of natural phenomena %D 2010 %P 109-138 %V 5 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105606/ %R 10.1051/mmnp/20105606 %G en %F MMNP_2010_5_6_a5
T. Dhirasakdanon; H. R. Thieme. Stability of the Endemic Coexistence Equilibrium for One Host and Two Parasites. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 109-138. doi : 10.1051/mmnp/20105606. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105606/
[1] The dynamics of two viral infections in a single host population with applications to hantavirus Math. Biosci. 2003 191 217
, ,[2] Population dynamics of fox rabies in Europe Nature 1981 765 771
, , ,[3] V. Andreasen. Multiple times scales in the dynamics of infectious diseases. Mathematical Approaches to Problems in Resource Management and Epidemiology (C. Castillo-Chavez, S.A. Levin, C.A. Shoemaker, eds.), 142–151, Springer, Berlin Heidelberg, 1989.
[4] The dynamics of cocirculating influenza strains conferring partial cross-immunity J. Math. Biol. 1997 825 842
, ,[5] Models for an arenavirus infection in a rodent population: consequences of horizontal, vertical and sexual transmission Math. Biosci. Engin. 2008 617 645
, ,[6] Epidemiological interference Intern. J. Epidemiology 1975 337 342
[7] The dynamics of insect-pathogen interactions in stage-structured populations The American Naturalist 1995 855 887
,[8] Epidemiological models with age structure, proportionate mixing, and cross-immunity J. Math. Biol. 1989 233 258
, , , ,[9] T. Dhirasakdanon, H.R. Thieme. Persistence of vertically transmitted parasite strains which protect against more virulent horizontally transmitted strains. Modeling and Dynamics of Infectious Diseases (Z. Ma, Y. Zhou, J. Wu, eds.), 187–215, World Scientific, Singapore, 2009.
[10] Patterns in the effects of infectious diseases on population growth J. Math. Biol. 1991 539 570
,[11] Epidemiologic interference of virus populations J. Math. Biol. 1979 291 300
[12] K. Dietz. Overall population patterns in the transmission cycle of infectious disease agents. Population Biology of Infectious Diseases (R.M. Anderson, R.M. May, eds.), 87–102, Springer, Dahlem Konferenzen, Berlin, 1982.
[13] An apparent paradox of horizontal and vertical disease transmission J. Biol. Dyn. 2007 45 62
, ,[14] Recurrent outbreaks of childhood diseases revisited: the impact of isolation Math. Biosci. 1995 93 130
,[15] Endemic models with arbitrarily distributed periods of infection. II. Fast disease dynamics and permanent recovery SIAM J. Appl. Math. 2000 983 1012
,[16] L.Q. Gao, J. Mena-Lorca, H.W. Hethcote. Variations on a theme of SEI endemic models. Differential Equations and Applications to Biology and Industry (M. Martelli, C.L. Cooke, E. Cumberbatch, B. Tang, H.R. Thieme, eds.), 191–207, World Scientific, Singapore, 1996.
[17] Epidemic models: thresholds and population regulation The American Naturalist 1983 892 898
,[18] Some results for an SEIR epidemic model with density dependence in the death rate IMA J. Math. Appl. Med. Biol. 1992 67 106
[19] Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity Math. Comput. Modelling 1997 85 107
[20] Infected coexistence instability with and without density-dependent regulation J. Theor. Biol. 1997 345 356
,[21] Symbiont-mediated protection Proc. R. Soc. B 2008 353 361
[22] H.W. Hethcote, S.A. Levin. Periodicity in epidemiological models. Applied Mathematical Ecology (S.A. Levin, T.G. Hallam, L.J. Gross, eds.), 193–211, Springer, Berlin Heidelberg, 1989.
[23] Nonlinear oscillations in epidemic models SIAM J. Appl. Math. 1981 1 9
, ,[24] Species coexistence and periodicity in host-host-pathogen models J. Math. Biol. 2005 629 660
, ,[25] Infectious disease and species coexistence: a model of Lotka-Volterra form Am. Nat. 1985 196 211
,[26] Strain replacement in an epidemic model with super-infection and perfect vaccination Math. Biosci. 2005 23 46
, ,[27] Epidemiological models for mutating pathogens SIAM J. Appl. Math. 2004 1 23
, , ,[28] Dynamics of influenza A drift: the linear three-strain model Math. Biosci. 1999 33 51
, ,[29] The evolution of virulence in pathogens with vertical and horizontal transmission Evolution 1996 1729 1741
, ,[30] Dose-dependent latent period and periodicity of infectious diseases J. Math. Biol. 1993 487 494
[31] Competitive co-existence of vertically and horizontally transmitted diseases Evolutionary Ecology Res. 2005 1183 1190
, , ,[32] M. Martcheva. On the mechanisms with strain replacement in epidemic models with vaccination. Current Developments in Mathematical Biology (R.C. John Boucher, K. Mahdavi, eds.), 149–165, World Scientific, Hackensack, 2007.
[33] The role of coinfection in multidisease dynamics SIAM J. Appl. Math. 2006 843 872
,[34] The effects of genetic and environmental factors on disease expression (stroma formation) and plant growth in Brachypodium sylvaticum infected by Epichloë sylvatica OIKOS 2000 446 458
,[35] Periodic solutions: a robust numerical method for an S-I-R model of epidemics J. Math. Biol. 1999 471 492
,[36] Dynamics of two-strain influenza with isolation and partial cross-immunity SIAM J. Appl. Math. 2005 964 982
, , ,[37] A. Pugliese. An S→E→I epidemic model with varying population size. Differential Equations Models in Biology, Epidemiology and Ecology (S. Busenberg, M. Martelli, eds.), 121–138, Springer, Berlin Heidelberg, 1991.
[38] Fungal endophytes: a continuum of interactions with host plants Annu. Rev. Ecol. Syst. 1998 319 343
, , ,[39] Hopf bifurcation and stable limit cycle behavior in the spread of infectious disease, with special application to fox rabies Math. Biosci. 1989 199 207
[40] H.R. Thieme. Stability change of the endemic equilibrium in age-structured models for the spread of S-I-R type infectious diseases. Differential Equations Models in Biology, Epidemiology and Ecology (S. Busenberg, M. Martelli, eds.), 139–158, Springer, Berlin Heidelberg, 1991.
[41] H.R. Thieme. Mathematics in Population Biology. Princeton University Press, Princeton, 2003.
[42] How may infection-age dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math. 1993 1447 1479
,[43] An epidemic model with post-contact prophylaxis of distributed length. II. Stability and oscillations if treatment is fully effective Math. Model. Nat. Phenom. 2008 267 293
, ,[44] Disease induced oscillations between two competing species SIAM J. Appl. Dyn. Sys. 2004 601 619
,[45] The effects of diseases on competing species Math. Biosci. 2001 111 131
Cité par Sources :