A New Mathematical Model of Syphilis
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 96-108.

Voir la notice de l'article provenant de la source EDP Sciences

The CDC launched the National Plan to Eliminate Syphilis from the USA in October 1999 . In order to reach this goal, a good understanding of the transmission dynamics of the disease is necessary. Based on a SIRS model Breban et al.  provided some evidence that supports the feasibility of the plan proving that no recurring outbreaks should occur for syphilis. We study in this work a syphilis model that includes partial immunity and vaccination. This model suggests that a backward bifurcation very likely occurs for the real-life estimated epidemiological parameters for syphilis. This may explain the resurgence of syphilis after mass treatment . Occurrence of backward bifurcation brings a new challenge for the plan of the CDC’s –striking a balance between treatment of early infection, vaccination development and health education. Our models suggest that the development of an effective vaccine, as well as health education that leads to enhanced biological and behavioral protection against infection in high-risk populations, are among the best ways to achieve the goal of elimination of syphilis in the USA.
DOI : 10.1051/mmnp/20105605

F. A. Milner 1 ; R. Zhao 2

1 School of Mathematical and Statistical Sciences, Arizona State University P.O. Box 871804, Tempe, AZ 85287-1804, USA
2 Department of Computer Science, Purdue University, West Lafayette, IN 47907-2107, USA
@article{MMNP_2010_5_6_a4,
     author = {F. A. Milner and R. Zhao},
     title = {A {New} {Mathematical} {Model} of {Syphilis}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {96--108},
     publisher = {mathdoc},
     volume = {5},
     number = {6},
     year = {2010},
     doi = {10.1051/mmnp/20105605},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105605/}
}
TY  - JOUR
AU  - F. A. Milner
AU  - R. Zhao
TI  - A New Mathematical Model of Syphilis
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 96
EP  - 108
VL  - 5
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105605/
DO  - 10.1051/mmnp/20105605
LA  - en
ID  - MMNP_2010_5_6_a4
ER  - 
%0 Journal Article
%A F. A. Milner
%A R. Zhao
%T A New Mathematical Model of Syphilis
%J Mathematical modelling of natural phenomena
%D 2010
%P 96-108
%V 5
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105605/
%R 10.1051/mmnp/20105605
%G en
%F MMNP_2010_5_6_a4
F. A. Milner; R. Zhao. A New Mathematical Model of Syphilis. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 96-108. doi : 10.1051/mmnp/20105605. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105605/

[1] R. E. Baughn, D. M. Musher Secondary syphilitic lesions Clin. Microbiol. Rev. 2005 205 216

[2] R. Breban, V. Supervie, J. T. Okano, R. Vardavas, and S. Blower. The transmission dynamics of syphilis and the CDC’s elimination plan. Available from Nature Proceedings 〈 http://dx.doi.org/0.1038/npre.2007.1373.1 ⟩ (2007).

[3] R. Breban, V. Supervie, J. T. Okano, R. Vardavas, S. Blower Is there any evidence that syphilis epidemics cycle? Lancet Infect. Dis. 2008 577 581

[4] Centers for Disease Control and Prevention. The National Plan to Eliminate Syphilis from the United States, 2006, http://www.cdc.gov/stopsyphilis/plan.htm.

[5] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz On the definition and the computation of the basic reproduction ratio R0 in models for infectionus diseases in heterogeneous populations J. Math. Biol. 1990 365 382

[6] L. Doherty, K. A. Fenton, J. Jones, T. C. Paine, S. P. Higgins, D. Williams, A. Palfreeman. Syphilis: old problem, new strategy BMJ 2002 153 156

[7] J. Dushoff, W. Huang, C. Castillo-Chavez Backwards bifurcations and catastrophe in simple models of fatal diseases J. Math. Biol. 1998 227 248

[8] G. P. Garnett, S. O. Aral, D. V. Hoyle, W. Cates, R. M. Anderson The natural history of syphilis: implications for the trasmission dynamics and control of infection Sex. Transm. Dis. 1997 185 200

[9] M. G. M. Gomes, A. O. Franco, M. C. Gomes, G. F. Medley The reinfection threshold promotes variability in tuberculosis epidemiology and vaccine efficacy Proc. Biol. Sci. 2004 617 623

[10] M. G. M. Gomes, A. Margheri, G. F. Medley, C. Rebelo Dynamical behaviour of epidemiological models with sub-optimal immunity and nonlinear incidence J. Math. Biol. 2005 414 430

[11] M. G. M. Gomes, L. J. White, G. F. Medley Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives Journal of Theoretical Biology 2004 539 549

[12] D. Gökaydin, J. B. Oliveira-Martins, I. Gordo, M. G. M. Gomes The reinfection threshold regulates pathogen diversity: the case of influenza J. R. Soc. Interface 2007 137 142

[13] N. C. Grassly, C. Fraser, G. P. Garnett Host immunity and synchronized epidemics of syphilis across the United States Nature 2005 417 421

[14] K.P. Hadeler, P. Van Den Driessche Backward bifurcation in epidemic control Mathematical Biosciences 1997 15 35

[15] A. K. Hurtig, A. Nicoll, C. Carne, T. Lissauer, N. Connor, J. P. Webster, L. Ratcliffe Syphilis in pregnant women and their children in the United Kingdom: results from national clinician reporting surveys 1994-7 BMJ 1998 1617 1619

[16] R. E. Lafond, S. A. Lukehart Biological basis for syphilis Clin. Microbiol. Rev. 2006 29 49

[17] C. A. Morgan, S. A. Lukehart, W. C. Van Voorhis Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K Infect. Immun. 2003 5605 5612

[18] M. Myint, H. Bashiri, R. D. Harrington, C. M. Marra Relapse of secondary syphilis after Benzathine Penicillin G: molecular analysis Sex. Transm. Dis. 2004 196 199

[19] G. L. Oxman, K. Smolkowski, J. Noell Mathematical modeling of epidemic syphilis transmission: implications for syphilis control programs Sex. Transm. Dis. 1996 30 39

[20] T. Parran Syphilis: a public health problem Science 1938 147 152

[21] B. Pourbohloul, M. L. Rekart, R. C. Brunham Impact of mass treatment on syphilis transmission: a mathematical modeling approach Sex. Transm. Dis. 2003 297 305

[22] T. C. Reluga, J. Medlock Resistance mechanisms matter in SIR models Math Biosci Eng. 2007 553 563

[23] P. Van Den Driessche, J. Watmough Reproduction numbers and sub-shreshold endemic equilibria for compartmental models of disease transmission Mathematical Biosciences 2002 29 48

Cité par Sources :