Analysis of a Nonautonomous HIV/AIDS Model
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 70-95.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper we have considered a nonlinear and nonautonomous stage-structured HIV/AIDS epidemic model with an imperfect HIV vaccine, varying total population size and distributed time delay to become infectious due to intracellular delay between initial infection of a cell by HIV and the release of new virions. Here, we have established some sufficient conditions on the permanence and extinction of the disease by using inequality analytical technique. We have obtained the explicit formula of the eventual lower bounds of infected persons. We have introduced some new threshold values R0 and R∗ and further obtained that the disease will be permanent when R0 > 1 and the disease will be going to extinct when R∗ 1. By Lyapunov functional method, we have also obtained some sufficient conditions for global asymptotic stability of this model. The aim of the analysis of this model is to trace the parameters of interest for further study, with a view to informing and assisting policy-maker in targeting prevention and treatment resources for maximum effectiveness.
DOI : 10.1051/mmnp/20105604

G. P. Samanta 1

1 Mathematical Institute, Slovak Academy of Sciences Stefanikova 49, 81473 Bratislava, Slovak Republic
@article{MMNP_2010_5_6_a3,
     author = {G. P. Samanta},
     title = {Analysis of a {Nonautonomous} {HIV/AIDS} {Model}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {70--95},
     publisher = {mathdoc},
     volume = {5},
     number = {6},
     year = {2010},
     doi = {10.1051/mmnp/20105604},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105604/}
}
TY  - JOUR
AU  - G. P. Samanta
TI  - Analysis of a Nonautonomous HIV/AIDS Model
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 70
EP  - 95
VL  - 5
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105604/
DO  - 10.1051/mmnp/20105604
LA  - en
ID  - MMNP_2010_5_6_a3
ER  - 
%0 Journal Article
%A G. P. Samanta
%T Analysis of a Nonautonomous HIV/AIDS Model
%J Mathematical modelling of natural phenomena
%D 2010
%P 70-95
%V 5
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105604/
%R 10.1051/mmnp/20105604
%G en
%F MMNP_2010_5_6_a3
G. P. Samanta. Analysis of a Nonautonomous HIV/AIDS Model. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 70-95. doi : 10.1051/mmnp/20105604. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105604/

[1] R. M. Anderson The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS J. AIDS 1988 241 256

[2] R. M. Anderson, R. M. May Population Biology of Infectious Diseases. Part I Nature 1979 361 367

[3] R. M. Anderson, G. F. Medly, R. M. May, A. M. Johnson A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS IMA J. Math. Appl. Med. Biol. 1986 229 263

[4] M. Bachar, A. Dorfmayr HIV treatment models with time delay C.R. Biologies 2004 983 994

[5] BBC News (BBC). HIV reduces infection. September 2009, http://news.bbc.co.uk/2/hi/health/8272113.stm.

[6] S. Blower Calculating the consequences: HAART and risky sex AIDS 2001 1309 1310

[7] F. Brauer Models for the disease with vertical transmission and nonlinear population dynamics Math. Biosci. 1995 13 24

[8] S. Busenberg, K. Cooke. Vertically transmitted diseases. Springer, Berlin, 1993.

[9] L. M. Cai, X. Li, M. Ghosh, B. Guo Stability of an HIV/AIDS epidemic model with treatment J. Comput. Appl. Math. 2009 313 323

[10] V. Capasso. Mathematical structures of epidemic systems, Lectures Notes in Biomathematics, Vol. 97. Springer-Verlag, Berlin, 1993.

[11] Centers for Disease Control and Prevention. HIV and its transmission. Divisions of HIV/AIDS Prevention, 2003.

[12] C. Connell Mccluskey A model of HIV/AIDS with staged progression and amelioration Math. Biosci. 2003 1 16

[13] R. V. Culshaw, S. Ruan A delay-differential equation model of HIV infection of CD4 + T-cells Math. Biosci. 2000 27 39

[14] J. M. Cushing. Integrodifferential equations and delay models in population dynamics. Spring, Heidelberg, 1977.

[15] O. Diekmann, J. A. P. Heesterbeek. Mathematical epidemiology of infectious diseases: model building, analysis, and interpretation. John Wiley and Sons Ltd., Chichester, New York, 2000.

[16] E. H. Elbasha, A. B. Gumel Theoretical assessment of public health impact of imperfect prophylactic HIV-1 vaccines with therapeutic benefits Bull. Math. Biol. 2006 577 614

[17] J. Esparza, S. Osmanov HIV vaccine: a global perspective Curr. Mol. Med. 2003 183 193

[18] K. Gopalsamy. Stability and oscillations in delay-differential equations of population dynamics. Kluwer, Dordrecht, 1992.

[19] D. Greenhalgh, M. Doyle, F. Lewis A mathematical treatment of AIDS and condom use IMA J. Math. Appl. Med. Biol. 2001 225 262

[20] A. B. Gumel, C. C. Mccluskey, P. Van Den Driessche Mathematical study of a staged-progression HIV model with imperfect vaccine Bull. Math. Biol. 2006 2105 2128

[21] J. K. Hale, S. M. V. Lunel. Introduction to functional differential equations. Springer-Verlag, New York, 1993.

[22] A. V. M. Herz, S. Bonhoeffer, R. M. Anderson, R. M. May, M. A. Nowak Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay Proc. Nat. Acad. Sci. USA 1996 7247 7251

[23] G. Herzong, R. Redheffer Nonautonomous SEIRS and Thron models for epidemiology and cell biology Nonlinear Anal.: RWA 2004 33 44

[24] H. W. Hethcote, J. W. Van Ark. Modelling HIV transmission and AIDS in the United States, in: Lect. Notes Biomath., vol. 95. Springer, Berlin, 1992.

[25] Y. H. Hsieh, C. H. Chen Modelling the social dynamics of a sex industry: Its implications for spread of HIV/AIDS Bull. Math. Biol. 2004 143 166

[26] Y. H. Hsieh, K. Cooke Behaviour change and treatment of core groups: its effect on the spread of HIV/AIDS IMA J. Math. Appl. Med. Biol. 2000 213 241

[27] D. W. Jordan, P. Smith. Nonlinear ordinary differential equations. Oxford University Press, New York, 2004.

[28] W. O. Kermack, A. G. Mckendrick. Contributions to the mathematical theory of epidemics. Part I Proc. R. Soc. A 1927 700 721

[29] Y. Kuang. Delay-differential equations with applications in population dynamics. Academic Press, New York, 1993.

[30] P. D. Leenheer, H. L. Smith Virus dynamics: a global analysis SIAM. J. Appl. Math. 2003 1313 1327

[31] M. Y. Li, H. L. Smith, L. Wang Global dynamics of an SEIR epidemic with vertical transmission SIAM. J. Appl. Math. 2001 58 69

[32] M. C. I. Lipman, R. W. Baker, M. A. Johnson. An atlas of differential diagnosis in HIV disease. CRC Press-Parthenon Publishers, pp. 22-27, 2003.

[33] Z. Ma, Y. Zhou, W. Wang, Z. Jin. Mathematical modelling and research of epidemic dynamical systems. Science Press, Beijing, 2004.

[34] R. M. May, R. M. Anderson Transmission dynamics of HIV infection Nature 1987 137 142

[35] Medical News Today, dated 9th February, 2007, East Sussex, TN 40 9BA, United Kingdom.

[36] X. Meng, L. Chen, H. Cheng Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination Appl. Math. Comput. 2007 516 529

[37] R. Naresh, A. Tripathi, S. Omar Modelling the spread of AIDS epidemic with vertical transmission Appl. Math. Comput. 2006 262 272

[38] A. S. Perelson, P. W. Nelson Mathematical analysis of HIV-1 dynamics in vivo SIAM Rev. 1999 3 44

[39] A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, D. D. Ho HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time Science 1996 1582 1586

[40] G. P. Samanta Dynamic behaviour for a nonautonomous heroin epidemic model with time delay J. Appl. Math. Comput 2009

[41] J. Shiver, E. Emini Recent advances in the development of HIV-1 vaccines using replication-incompetant adenovirus vectors Ann. Rev. Med. 2004 355 372

[42] C. A. Stoddart, R. A. Reyes Models of HIV-1 disease: A review of current status Drug Discovery Today: Disease Models 2006 113 119

[43] Z. Teng, L. Chen The positive periodic solutions of periodic Kolmogorov type systems with delays Acta Math. Appl. Sin. 1999 446 456

[44] H. R. Thieme Uniform weak implies uniform strong persistence for non-autonomous semiflows Proc. Am. Math. Soci. 1999 2395 2403

[45] H. R. Thieme Uniform persistence and permanence for nonautonomous semiflows in population biology Math. Biosci. 2000 173 201

[46] UNAIDS. 2007 AIDS epidemic update. WHO, December 2007.

[47] L. Wang, M. Y. Li Mathematical analysis of the global dynamics of a model for HIV infection of CD4+T-cells Math. Biosci. 2006 44 57

[48] K. Wang, W. Wang, X. Liu Viral infection model with periodic lytic immune response Chaos Solitons Fractals 2006 90 99

[49] Wikipedia. HIV vaccine. September, 2009, http://en.wikipedia.org/wiki/HIV_vaccine.

[50] T. Zhang, Z. Teng On a nonautonomous SEIRS model in epidemiology Bull. Math. Biol. 2007 2537 2559

[51] T. Zhang, Z. Teng Permanence and extinction for a nonautonomous SIRS epidemic model with time delay Appl. Math. Model. 2009 1058 1071

[52] R. M. Zinkernagel The challenges of an HIV vaccine enterprise Science 2004 1294 1297

Cité par Sources :