Voir la notice de l'article provenant de la source EDP Sciences
@article{10_1051_mmnp_20105604,
author = {G. P. Samanta},
title = {Analysis of a {Nonautonomous} {HIV/AIDS} {Model}},
journal = {Mathematical modelling of natural phenomena},
pages = {70--95},
publisher = {mathdoc},
volume = {5},
number = {6},
year = {2010},
doi = {10.1051/mmnp/20105604},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105604/}
}
TY - JOUR AU - G. P. Samanta TI - Analysis of a Nonautonomous HIV/AIDS Model JO - Mathematical modelling of natural phenomena PY - 2010 SP - 70 EP - 95 VL - 5 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105604/ DO - 10.1051/mmnp/20105604 LA - en ID - 10_1051_mmnp_20105604 ER -
G. P. Samanta. Analysis of a Nonautonomous HIV/AIDS Model. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 70-95. doi: 10.1051/mmnp/20105604
[1] The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS J. AIDS 1988 241 256
[2] , Population Biology of Infectious Diseases. Part I Nature 1979 361 367
[3] , , , A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS IMA J. Math. Appl. Med. Biol. 1986 229 263
[4] , HIV treatment models with time delay C.R. Biologies 2004 983 994
[5] BBC News (BBC). HIV reduces infection. September 2009, http://news.bbc.co.uk/2/hi/health/8272113.stm.
[6] Calculating the consequences: HAART and risky sex AIDS 2001 1309 1310
[7] Models for the disease with vertical transmission and nonlinear population dynamics Math. Biosci. 1995 13 24
[8] S. Busenberg, K. Cooke. Vertically transmitted diseases. Springer, Berlin, 1993.
[9] , , , Stability of an HIV/AIDS epidemic model with treatment J. Comput. Appl. Math. 2009 313 323
[10] V. Capasso. Mathematical structures of epidemic systems, Lectures Notes in Biomathematics, Vol. 97. Springer-Verlag, Berlin, 1993.
[11] Centers for Disease Control and Prevention. HIV and its transmission. Divisions of HIV/AIDS Prevention, 2003.
[12] A model of HIV/AIDS with staged progression and amelioration Math. Biosci. 2003 1 16
[13] , A delay-differential equation model of HIV infection of CD4 + T-cells Math. Biosci. 2000 27 39
[14] J. M. Cushing. Integrodifferential equations and delay models in population dynamics. Spring, Heidelberg, 1977.
[15] O. Diekmann, J. A. P. Heesterbeek. Mathematical epidemiology of infectious diseases: model building, analysis, and interpretation. John Wiley and Sons Ltd., Chichester, New York, 2000.
[16] , Theoretical assessment of public health impact of imperfect prophylactic HIV-1 vaccines with therapeutic benefits Bull. Math. Biol. 2006 577 614
[17] , HIV vaccine: a global perspective Curr. Mol. Med. 2003 183 193
[18] K. Gopalsamy. Stability and oscillations in delay-differential equations of population dynamics. Kluwer, Dordrecht, 1992.
[19] , , A mathematical treatment of AIDS and condom use IMA J. Math. Appl. Med. Biol. 2001 225 262
[20] , , Mathematical study of a staged-progression HIV model with imperfect vaccine Bull. Math. Biol. 2006 2105 2128
[21] J. K. Hale, S. M. V. Lunel. Introduction to functional differential equations. Springer-Verlag, New York, 1993.
[22] , , , , Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay Proc. Nat. Acad. Sci. USA 1996 7247 7251
[23] , Nonautonomous SEIRS and Thron models for epidemiology and cell biology Nonlinear Anal.: RWA 2004 33 44
[24] H. W. Hethcote, J. W. Van Ark. Modelling HIV transmission and AIDS in the United States, in: Lect. Notes Biomath., vol. 95. Springer, Berlin, 1992.
[25] , Modelling the social dynamics of a sex industry: Its implications for spread of HIV/AIDS Bull. Math. Biol. 2004 143 166
[26] , Behaviour change and treatment of core groups: its effect on the spread of HIV/AIDS IMA J. Math. Appl. Med. Biol. 2000 213 241
[27] D. W. Jordan, P. Smith. Nonlinear ordinary differential equations. Oxford University Press, New York, 2004.
[28] , Contributions to the mathematical theory of epidemics. Part I Proc. R. Soc. A 1927 700 721
[29] Y. Kuang. Delay-differential equations with applications in population dynamics. Academic Press, New York, 1993.
[30] , Virus dynamics: a global analysis SIAM. J. Appl. Math. 2003 1313 1327
[31] , , Global dynamics of an SEIR epidemic with vertical transmission SIAM. J. Appl. Math. 2001 58 69
[32] M. C. I. Lipman, R. W. Baker, M. A. Johnson. An atlas of differential diagnosis in HIV disease. CRC Press-Parthenon Publishers, pp. 22-27, 2003.
[33] Z. Ma, Y. Zhou, W. Wang, Z. Jin. Mathematical modelling and research of epidemic dynamical systems. Science Press, Beijing, 2004.
[34] , Transmission dynamics of HIV infection Nature 1987 137 142
[35] Medical News Today, dated 9th February, 2007, East Sussex, TN 40 9BA, United Kingdom.
[36] , , Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination Appl. Math. Comput. 2007 516 529
[37] , , Modelling the spread of AIDS epidemic with vertical transmission Appl. Math. Comput. 2006 262 272
[38] , Mathematical analysis of HIV-1 dynamics in vivo SIAM Rev. 1999 3 44
[39] , , , , HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time Science 1996 1582 1586
[40] Dynamic behaviour for a nonautonomous heroin epidemic model with time delay J. Appl. Math. Comput 2009
[41] , Recent advances in the development of HIV-1 vaccines using replication-incompetant adenovirus vectors Ann. Rev. Med. 2004 355 372
[42] , Models of HIV-1 disease: A review of current status Drug Discovery Today: Disease Models 2006 113 119
[43] , The positive periodic solutions of periodic Kolmogorov type systems with delays Acta Math. Appl. Sin. 1999 446 456
[44] Uniform weak implies uniform strong persistence for non-autonomous semiflows Proc. Am. Math. Soci. 1999 2395 2403
[45] Uniform persistence and permanence for nonautonomous semiflows in population biology Math. Biosci. 2000 173 201
[46] UNAIDS. 2007 AIDS epidemic update. WHO, December 2007.
[47] , Mathematical analysis of the global dynamics of a model for HIV infection of CD4+T-cells Math. Biosci. 2006 44 57
[48] , , Viral infection model with periodic lytic immune response Chaos Solitons Fractals 2006 90 99
[49] Wikipedia. HIV vaccine. September, 2009, http://en.wikipedia.org/wiki/HIV_vaccine.
[50] , On a nonautonomous SEIRS model in epidemiology Bull. Math. Biol. 2007 2537 2559
[51] , Permanence and extinction for a nonautonomous SIRS epidemic model with time delay Appl. Math. Model. 2009 1058 1071
[52] The challenges of an HIV vaccine enterprise Science 2004 1294 1297
Cité par Sources :