Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_6_a3, author = {G. P. Samanta}, title = {Analysis of a {Nonautonomous} {HIV/AIDS} {Model}}, journal = {Mathematical modelling of natural phenomena}, pages = {70--95}, publisher = {mathdoc}, volume = {5}, number = {6}, year = {2010}, doi = {10.1051/mmnp/20105604}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105604/} }
TY - JOUR AU - G. P. Samanta TI - Analysis of a Nonautonomous HIV/AIDS Model JO - Mathematical modelling of natural phenomena PY - 2010 SP - 70 EP - 95 VL - 5 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105604/ DO - 10.1051/mmnp/20105604 LA - en ID - MMNP_2010_5_6_a3 ER -
G. P. Samanta. Analysis of a Nonautonomous HIV/AIDS Model. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 70-95. doi : 10.1051/mmnp/20105604. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105604/
[1] The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS J. AIDS 1988 241 256
[2] Population Biology of Infectious Diseases. Part I Nature 1979 361 367
,[3] A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS IMA J. Math. Appl. Med. Biol. 1986 229 263
, , ,[4] HIV treatment models with time delay C.R. Biologies 2004 983 994
,[5] BBC News (BBC). HIV reduces infection. September 2009, http://news.bbc.co.uk/2/hi/health/8272113.stm.
[6] Calculating the consequences: HAART and risky sex AIDS 2001 1309 1310
[7] Models for the disease with vertical transmission and nonlinear population dynamics Math. Biosci. 1995 13 24
[8] S. Busenberg, K. Cooke. Vertically transmitted diseases. Springer, Berlin, 1993.
[9] Stability of an HIV/AIDS epidemic model with treatment J. Comput. Appl. Math. 2009 313 323
, , ,[10] V. Capasso. Mathematical structures of epidemic systems, Lectures Notes in Biomathematics, Vol. 97. Springer-Verlag, Berlin, 1993.
[11] Centers for Disease Control and Prevention. HIV and its transmission. Divisions of HIV/AIDS Prevention, 2003.
[12] A model of HIV/AIDS with staged progression and amelioration Math. Biosci. 2003 1 16
[13] A delay-differential equation model of HIV infection of CD4 + T-cells Math. Biosci. 2000 27 39
,[14] J. M. Cushing. Integrodifferential equations and delay models in population dynamics. Spring, Heidelberg, 1977.
[15] O. Diekmann, J. A. P. Heesterbeek. Mathematical epidemiology of infectious diseases: model building, analysis, and interpretation. John Wiley and Sons Ltd., Chichester, New York, 2000.
[16] Theoretical assessment of public health impact of imperfect prophylactic HIV-1 vaccines with therapeutic benefits Bull. Math. Biol. 2006 577 614
,[17] HIV vaccine: a global perspective Curr. Mol. Med. 2003 183 193
,[18] K. Gopalsamy. Stability and oscillations in delay-differential equations of population dynamics. Kluwer, Dordrecht, 1992.
[19] A mathematical treatment of AIDS and condom use IMA J. Math. Appl. Med. Biol. 2001 225 262
, ,[20] Mathematical study of a staged-progression HIV model with imperfect vaccine Bull. Math. Biol. 2006 2105 2128
, ,[21] J. K. Hale, S. M. V. Lunel. Introduction to functional differential equations. Springer-Verlag, New York, 1993.
[22] Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay Proc. Nat. Acad. Sci. USA 1996 7247 7251
, , , ,[23] Nonautonomous SEIRS and Thron models for epidemiology and cell biology Nonlinear Anal.: RWA 2004 33 44
,[24] H. W. Hethcote, J. W. Van Ark. Modelling HIV transmission and AIDS in the United States, in: Lect. Notes Biomath., vol. 95. Springer, Berlin, 1992.
[25] Modelling the social dynamics of a sex industry: Its implications for spread of HIV/AIDS Bull. Math. Biol. 2004 143 166
,[26] Behaviour change and treatment of core groups: its effect on the spread of HIV/AIDS IMA J. Math. Appl. Med. Biol. 2000 213 241
,[27] D. W. Jordan, P. Smith. Nonlinear ordinary differential equations. Oxford University Press, New York, 2004.
[28] Contributions to the mathematical theory of epidemics. Part I Proc. R. Soc. A 1927 700 721
,[29] Y. Kuang. Delay-differential equations with applications in population dynamics. Academic Press, New York, 1993.
[30] Virus dynamics: a global analysis SIAM. J. Appl. Math. 2003 1313 1327
,[31] Global dynamics of an SEIR epidemic with vertical transmission SIAM. J. Appl. Math. 2001 58 69
, ,[32] M. C. I. Lipman, R. W. Baker, M. A. Johnson. An atlas of differential diagnosis in HIV disease. CRC Press-Parthenon Publishers, pp. 22-27, 2003.
[33] Z. Ma, Y. Zhou, W. Wang, Z. Jin. Mathematical modelling and research of epidemic dynamical systems. Science Press, Beijing, 2004.
[34] Transmission dynamics of HIV infection Nature 1987 137 142
,[35] Medical News Today, dated 9th February, 2007, East Sussex, TN 40 9BA, United Kingdom.
[36] Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination Appl. Math. Comput. 2007 516 529
, ,[37] Modelling the spread of AIDS epidemic with vertical transmission Appl. Math. Comput. 2006 262 272
, ,[38] Mathematical analysis of HIV-1 dynamics in vivo SIAM Rev. 1999 3 44
,[39] HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time Science 1996 1582 1586
, , , ,[40] Dynamic behaviour for a nonautonomous heroin epidemic model with time delay J. Appl. Math. Comput 2009
[41] Recent advances in the development of HIV-1 vaccines using replication-incompetant adenovirus vectors Ann. Rev. Med. 2004 355 372
,[42] Models of HIV-1 disease: A review of current status Drug Discovery Today: Disease Models 2006 113 119
,[43] The positive periodic solutions of periodic Kolmogorov type systems with delays Acta Math. Appl. Sin. 1999 446 456
,[44] Uniform weak implies uniform strong persistence for non-autonomous semiflows Proc. Am. Math. Soci. 1999 2395 2403
[45] Uniform persistence and permanence for nonautonomous semiflows in population biology Math. Biosci. 2000 173 201
[46] UNAIDS. 2007 AIDS epidemic update. WHO, December 2007.
[47] Mathematical analysis of the global dynamics of a model for HIV infection of CD4+T-cells Math. Biosci. 2006 44 57
,[48] Viral infection model with periodic lytic immune response Chaos Solitons Fractals 2006 90 99
, ,[49] Wikipedia. HIV vaccine. September, 2009, http://en.wikipedia.org/wiki/HIV_vaccine.
[50] On a nonautonomous SEIRS model in epidemiology Bull. Math. Biol. 2007 2537 2559
,[51] Permanence and extinction for a nonautonomous SIRS epidemic model with time delay Appl. Math. Model. 2009 1058 1071
,[52] The challenges of an HIV vaccine enterprise Science 2004 1294 1297
Cité par Sources :