Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_6_a2, author = {L. Sanz and J. A. Alonso}, title = {Approximate {Aggregation} {Methods} in {Discrete} {Time} {Stochastic} {Population} {Models}}, journal = {Mathematical modelling of natural phenomena}, pages = {38--69}, publisher = {mathdoc}, volume = {5}, number = {6}, year = {2010}, doi = {10.1051/mmnp/20105603}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105603/} }
TY - JOUR AU - L. Sanz AU - J. A. Alonso TI - Approximate Aggregation Methods in Discrete Time Stochastic Population Models JO - Mathematical modelling of natural phenomena PY - 2010 SP - 38 EP - 69 VL - 5 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105603/ DO - 10.1051/mmnp/20105603 LA - en ID - MMNP_2010_5_6_a2 ER -
%0 Journal Article %A L. Sanz %A J. A. Alonso %T Approximate Aggregation Methods in Discrete Time Stochastic Population Models %J Mathematical modelling of natural phenomena %D 2010 %P 38-69 %V 5 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105603/ %R 10.1051/mmnp/20105603 %G en %F MMNP_2010_5_6_a2
L. Sanz; J. A. Alonso. Approximate Aggregation Methods in Discrete Time Stochastic Population Models. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 38-69. doi : 10.1051/mmnp/20105603. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105603/
[1] Aproximating the Distribution of Population Size in Stochastic Multiregional Matrix Models withFast Migration Phil. Trans. R. Soc. A 2009 4801 4827
,[2] K. B. Athreya, P. E. Ney. Branching processes. Springer-Verlag, Berlin, 1972.
[3] P. Auger. Dynamics and Thermodynamics in Hierarchically Organized Systems, Applications in Physics, Biology and Economics. Pergamon Press, Oxford, 1989.
[4] Complex ecological models with simple dynamics: from individuals to populations Acta Biotheoretica 1994 111 136
,[5] Aggregation and Emergence in Systems of Ordinary Differential Equations Mathematical Computer Modelling 1998 1 22
,[6] Effects of a disease affecting a predator on the dynamics of a predator-prey system Journal of theoretical biology 2009 344 351
, , , , ,[7] Integrative Biology: Linking Levels of Organization Comptes Rendus de l’Académie des Sciences Biologies 2003 517 522
,[8] Aggregation methods in dynamical systems variables and applications in population and community dynamics Physics of Life Reviews 2008 79 105
, , , ,[9] Geometric singular perturbation theory for stochastic differential equations J. Diff. Equat. 2003 1 54
,[10] Multi-type branching in varying environment Stoc. Proc. Appl. 1999 357 400
, ,[11] Linear Discrete Population Models with Two Time Scales in Fast Changing Environments I: Autonomous Case Acta Biotheoretica 2001 261 276
, , ,[12] Linear Discrete Population Models with Two Time Scales in Fast Changing Environments II: Non Autonomous Case Acta Biotheoretica 2002 15 38
, , ,[13] Approximate reduction of multiregional birth-death models with fast migration Mathematical and Computer Modelling 2002 47 65
, ,[14] Population extinction and quasi-stationary behavior in stochastic density-dependent structured models Bull. Math. Bio. 2000 199 228
,[15] Aggregation methods in discrete Models J. Biol. Sys. 1995 603 612
, ,[16] A Discrete Model with Density Dependent Fast Migration Mathematical Biosciences 1999 91 110
, , ,[17] Declining survival probability threatens the North Atlantic right whale Proc. Natl. Acad. Sci. USA 1999 3308 3313
, ,[18] H. Caswell. Matrix population models (2nded.). Sinauer Associates, Sunderland, Massachusetts, 2001.
[19] Population dynamics modelling in an hierarchical arborescent river network: an attempt with Salmo trutta Acta Biotheoretica 1998 223 234
, , , ,[20] A density dependent model describing Salmo trutta population dynamics in an arborescent river network: effects of dams and channelling C. R. Acad. Sci. Paris, Sciences de la vie 1998 979 990
, , , ,[21] Annual spawning migrations in modeling brown trout population dynamics inside an arborescent river network Ecological Modelling 2000 15 31
, , , ,[22] Do Migratory or Demographic Disruptions Rule the Population Impact of Pollution in Spatial Networks? Theoretical Population Biology 2003 473 480
, , ,[23] Ergodicity of Age Structure in Populations with Markovian Vital Rates, II, General States Advances in Appl. Probability 1977 18 37
[24] Ergodics Theorems of Demography Bulletin of the American Mathematical Society N.S. 1979 275 295
[25] J. E. Cohen. Multiregional age structured populations with changing vital rates: weak and strong stochastic ergodic theorems. In Land, K.C., A. Rogers editors. Multiregional mathematical demography. Academic Press, New York, 477-503, 1982.
[26] A stochastic age-structured model of Striped Bass (Morone saxatilis) in the Potomac River Can. J. Fish. Aquat. Sci. 1983 2170 2183
, ,[27] Products of Random Matrices Ann. Math. Statist. 1960 457 469
,[28] Aggregation in stochastic ecosystem models Ecol. Modelling 1988 153 164
[29] P. Haccou, P. Jagers, V. Vatutin. Branching processes: Variation, growth, and extinction of populations, Cambridge University Press, 2005.
[30] T. Harris. The theory of branching processes, Springer-Verlag, Berlín, 1963.
[31] Confidence Intervals for Demographic Projections Based on Products of Random Matrices Theoretical Population Biology 1985 120 153
,[32] K. E. Holsinger. Demography and extinction in small populations, in: Genetics, demography and the viability of fragmented populations, eds. A. Young, G. Clarke, Cambridge University Press, 2000.
[33] R. Horn, C. Johnson. Matrix Analysis. Cambridge Univ. Press, 1985.
[34] Aggregation in model ecosystems I: Perfect Aggregation Ecological Modeling 1987 287 302
, ,[35] On multitype branching processes with ρ ≤ 1 Journal of Mathematical Analysis and Its Applications 1967 409 430
,[36] An explicit approach to evolutionarily stable dispersal strategies with a cost of dispersal Nonlinear Anal.: Real World Appl. 2000 137 144
, ,[37] M. Kimmel, D.E. Axelrod. Branching Processes in Biology, Springer, New York, 2002.
[38] F. Klebaner, Population Size Dependent Processes. In: Branching Processes: Variation, Growth and Extinction of Populations, P. Haccou, P. Jagers and V.A. Vatutin, 133-135, Cambridge University Press, 2005.
[39] Demographic stochasticity and social mating system in the process of extinction of small populations: the case of passerines introduced to New Zealand The American Naturalist 1999 449 463
, , ,[40] Migration Frequency and the Persistence of Host-Parasitoid Interactions Journal of Theoretical Biology 2003 639 654
, ,[41] Effects of asymmetric dispersal and environmental gradients on the stability of host-parasitoid systems Oikos 2005 603 613
, ,[42] Multistate dynamics: the convergence of an age-by-region population system Environment and Planning A 1980 589 613
[43]
[44] Reduction of slow–fast discrete models coupling migration and demography Journal of Theoretical Biology 2009 371 379
, , ,[45] C.J. Mode. Multitype Branching Processes. Theory and Applications. American Elsevier Publishing Co., Inc., New York, 1971.
[46] Supercritical multiregional stochastic models with fast migration Acta Biotheoretica 2009 479 500
, ,[47] Shrinking large-scale population projection models by aggregation and decomposition Environment and Planning A 1976 515 541
[48] A. Rogers. Multiregional Demography, Chichester, New York, 1995.
[49] Arima models for birth forecasting Journal of the American Statistical Association 1977 264 270
[50] Linear discrete models with different time scales Acta Bio. 1995 465 479
, ,[51] Variables Aggregation in Time Varying Discrete Systems Acta Biotheoretica 1998 273 297
,[52] Variables aggregation in a time discrete linear model Math. Biosc. 1999 111 146
,[53] Time scales in stochastic multiregional models Nonlinear Analysis: Real World Applications 2000 89 122
,[54] Time scales in a non autonomous linear discrete model Mathematical Models and Methods in Applied Sciences 2001 1 33
,[55] Approximate Reduction Techniques in Population Models with Two Time Scales: Study of the Approximation Acta Biotheoretica 2002 297 322
,[56] Approximate reduction of Galton-Watson processes with two time scales Mathematical Models and Methods in Applied Sciences 491 525 2003
, ,[57] Approximate reduction of multiregional models with environmental stochasticity Mathematical Biosciences 2007 134 154
,[58] Approximate Reduction of Non-Linear Discrete Models with Two Time Scales Journal of Difference Equations and Applications 2008 607 627
, ,[59] G.W. Stewart, J.I. Guang Sun. Matrix Perturbation Theory, Academic Press, Boston, 1990.
[60] Some stochastic versions of the matrix model for population dynamics J. Amer. Statist. Assoc. 1969 111 130
[61] Spatial synchrony in host-parasitoid models using aggregation of variables Mathematical Biosciences 2006 204 221
, , ,[62] Emergence of global behaviour in a host-parasitoid model with density-dependent dispersal in a chain of patches Ecological Complexity 2008 9 21
, , ,[63] Population dynamics in variable environments. I. Long-run growth rates and extinction Theor. Popul. Biol. 1980 314 342
,[64] Demography in stochastic environments. I. Exact distributions of age structure J. Math. Biol. 1984 335 350
[65] S. Tuljapurkar. Population Dynamics in Variable Environments, Springer-Verlag, Berlin, 1990.
[66] S. Tuljapurkar, H. Caswell (eds). Structured-Population Models in Marine, Terrestrial, and Freshwater Systems, Chapman and Hall, New York, 1997.
[67] Demographic uncertainty in ecological risk assessments Ecological Modelling 2001 95 102
, ,Cité par Sources :