Approximate Aggregation Methods in Discrete Time Stochastic Population Models
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 38-69.

Voir la notice de l'article provenant de la source EDP Sciences

Approximate aggregation techniques consist of introducing certain approximations that allow one to reduce a complex system involving many coupled variables obtaining a simpler ʽʽaggregated systemʼʼ governed by a few variables. Moreover, they give results that allow one to extract information about the complex original system in terms of the behavior of the reduced one. Often, the feature that allows one to carry out such a reduction is the presence of different time scales in the system under consideration. In this work we deal with aggregation techniques in stochastic discrete time models and their application to the study of multiregional models, i.e., of models for an age structured population distributed amongst different spatial patches and in which migration between the patches is usually fast with respect to the demography (reproduction-survival) in each patch. Stochasticity in population models can be of two kinds: environmental and demographic. We review the formulation and the main properties of the dynamics of the different models for populations evolving in discrete time and subjected to the effects of environmental and demographic stochasticity. Then we present different stochastic multiregional models with two time scales in which migration is fast with respect to demography and we review the main relationships between the dynamics of the original complex system and the aggregated simpler one. Finally, and within the context of models with environmental stochasticity in which the environmental variation is Markovian, we make use these techniques to analyze qualitatively the behavior of two multiregional models in which the original complex system is intractable. In particular we study conditions under which the population goes extinct or grows exponentially.
DOI : 10.1051/mmnp/20105603

L. Sanz 1 ; J. A. Alonso 1

1 Departamento de Matemáticas, E.T.S.I Industriales, Universidad Politécnica de Madrid
@article{MMNP_2010_5_6_a2,
     author = {L. Sanz and J. A. Alonso},
     title = {Approximate {Aggregation} {Methods} in {Discrete} {Time} {Stochastic} {Population} {Models}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {38--69},
     publisher = {mathdoc},
     volume = {5},
     number = {6},
     year = {2010},
     doi = {10.1051/mmnp/20105603},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105603/}
}
TY  - JOUR
AU  - L. Sanz
AU  - J. A. Alonso
TI  - Approximate Aggregation Methods in Discrete Time Stochastic Population Models
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 38
EP  - 69
VL  - 5
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105603/
DO  - 10.1051/mmnp/20105603
LA  - en
ID  - MMNP_2010_5_6_a2
ER  - 
%0 Journal Article
%A L. Sanz
%A J. A. Alonso
%T Approximate Aggregation Methods in Discrete Time Stochastic Population Models
%J Mathematical modelling of natural phenomena
%D 2010
%P 38-69
%V 5
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105603/
%R 10.1051/mmnp/20105603
%G en
%F MMNP_2010_5_6_a2
L. Sanz; J. A. Alonso. Approximate Aggregation Methods in Discrete Time Stochastic Population Models. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 38-69. doi : 10.1051/mmnp/20105603. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105603/

[1] J.A. Alonso, L. Sanz Aproximating the Distribution of Population Size in Stochastic Multiregional Matrix Models withFast Migration Phil. Trans. R. Soc. A 2009 4801 4827

[2] K. B. Athreya, P. E. Ney. Branching processes. Springer-Verlag, Berlin, 1972.

[3] P. Auger. Dynamics and Thermodynamics in Hierarchically Organized Systems, Applications in Physics, Biology and Economics. Pergamon Press, Oxford, 1989.

[4] P. Auger, R. Roussarie Complex ecological models with simple dynamics: from individuals to populations Acta Biotheoretica 1994 111 136

[5] P. Auger, J.C. Poggiale Aggregation and Emergence in Systems of Ordinary Differential Equations Mathematical Computer Modelling 1998 1 22

[6] P. Auger, M Rachid, C. Tanmay, S. Gauthier, T. Maurice, C. Joydev Effects of a disease affecting a predator on the dynamics of a predator-prey system Journal of theoretical biology 2009 344 351

[7] P. Auger, C. Lett Integrative Biology: Linking Levels of Organization Comptes Rendus de l’Académie des Sciences Biologies 2003 517 522

[8] P. Auger, R. Bravo De La Parra, J.C. Poggiale, E. Sánchez, L. Sanz Aggregation methods in dynamical systems variables and applications in population and community dynamics Physics of Life Reviews 2008 79 105

[9] N. Berglund, B. Gentz Geometric singular perturbation theory for stochastic differential equations J. Diff. Equat. 2003 1 54

[10] J.D. Biggins, H. Cohn, O. Nerman Multi-type branching in varying environment Stoc. Proc. Appl. 1999 357 400

[11] A. Blasco, L. Sanz, P. Auger, R. Bravo De La Parra Linear Discrete Population Models with Two Time Scales in Fast Changing Environments I: Autonomous Case Acta Biotheoretica 2001 261 276

[12] A. Blasco, L. Sanz, P. Auger, R. Bravo De La Parra Linear Discrete Population Models with Two Time Scales in Fast Changing Environments II: Non Autonomous Case Acta Biotheoretica 2002 15 38

[13] A. Blasco, L. Sanz, R. Bravo De La Parra Approximate reduction of multiregional birth-death models with fast migration Mathematical and Computer Modelling 2002 47 65

[14] G. L Block, L. J. S. Allen Population extinction and quasi-stationary behavior in stochastic density-dependent structured models Bull. Math. Bio. 2000 199 228

[15] R. Bravo, P. Auger, E. Sánchez Aggregation methods in discrete Models J. Biol. Sys. 1995 603 612

[16] R. Bravo De La Parra, E. Sánchez, O. Arino, P. Auger A Discrete Model with Density Dependent Fast Migration Mathematical Biosciences 1999 91 110

[17] H. Caswell, M. Fujiwara, S. Brault Declining survival probability threatens the North Atlantic right whale Proc. Natl. Acad. Sci. USA 1999 3308 3313

[18] H. Caswell. Matrix population models (2nded.). Sinauer Associates, Sunderland, Massachusetts, 2001.

[19] S. Charles, R. Bravo De La Parra, J.P. Mallet, H. Persat, P. Auger Population dynamics modelling in an hierarchical arborescent river network: an attempt with Salmo trutta Acta Biotheoretica 1998 223 234

[20] S. Charles, R. Bravo De La Parra, J.P. Mallet, H. Persat, P. Auger A density dependent model describing Salmo trutta population dynamics in an arborescent river network: effects of dams and channelling C. R. Acad. Sci. Paris, Sciences de la vie 1998 979 990

[21] S. Charles, R. Bravo De La Parra, J.P. Mallet, H. Persat, P. Auger Annual spawning migrations in modeling brown trout population dynamics inside an arborescent river network Ecological Modelling 2000 15 31

[22] A. Chaumot, S. Charles, P. Flammarion, P. Auger Do Migratory or Demographic Disruptions Rule the Population Impact of Pollution in Spatial Networks? Theoretical Population Biology 2003 473 480

[23] J. E. Cohen Ergodicity of Age Structure in Populations with Markovian Vital Rates, II, General States Advances in Appl. Probability 1977 18 37

[24] J. E. Cohen Ergodics Theorems of Demography Bulletin of the American Mathematical Society N.S. 1979 275 295

[25] J. E. Cohen. Multiregional age structured populations with changing vital rates: weak and strong stochastic ergodic theorems. In Land, K.C., A. Rogers editors. Multiregional mathematical demography. Academic Press, New York, 477-503, 1982.

[26] J.E. Cohen, S.W. Christensen, C.P. Goodyear A stochastic age-structured model of Striped Bass (Morone saxatilis) in the Potomac River Can. J. Fish. Aquat. Sci. 1983 2170 2183

[27] H. Furstenberg, H. Kesten Products of Random Matrices Ann. Math. Statist. 1960 457 469

[28] T.C. Gard Aggregation in stochastic ecosystem models Ecol. Modelling 1988 153 164

[29] P. Haccou, P. Jagers, V. Vatutin. Branching processes: Variation, growth, and extinction of populations, Cambridge University Press, 2005.

[30] T. Harris. The theory of branching processes, Springer-Verlag, Berlín, 1963.

[31] C.C. Heyde, J. E. Cohen Confidence Intervals for Demographic Projections Based on Products of Random Matrices Theoretical Population Biology 1985 120 153

[32] K. E. Holsinger. Demography and extinction in small populations, in: Genetics, demography and the viability of fragmented populations, eds. A. Young, G. Clarke, Cambridge University Press, 2000.

[33] R. Horn, C. Johnson. Matrix Analysis. Cambridge Univ. Press, 1985.

[34] Y. Iwasa, V. Andreasen, S. Levin Aggregation in model ecosystems I: Perfect Aggregation Ecological Modeling 1987 287 302

[35] A. Joffe, F. Spitzer On multitype branching processes with ρ ≤ 1 Journal of Mathematical Analysis and Its Applications 1967 409 430

[36] M. Khaladi, V. Grosbois, J. D. Lebreton. An explicit approach to evolutionarily stable dispersal strategies with a cost of dispersal Nonlinear Anal.: Real World Appl. 2000 137 144

[37] M. Kimmel, D.E. Axelrod. Branching Processes in Biology, Springer, New York, 2002.

[38] F. Klebaner, Population Size Dependent Processes. In: Branching Processes: Variation, Growth and Extinction of Populations, P. Haccou, P. Jagers and V.A. Vatutin, 133-135, Cambridge University Press, 2005.

[39] S. Legendre, J. Clobert, A. P. Moller, G. Sorci Demographic stochasticity and social mating system in the process of extinction of small populations: the case of passerines introduced to New Zealand The American Naturalist 1999 449 463

[40] C. Lett, P. Auger, R. Bravo De La Parra Migration Frequency and the Persistence of Host-Parasitoid Interactions Journal of Theoretical Biology 2003 639 654

[41] C. Lett, P. Auger, F. Fleury Effects of asymmetric dispersal and environmental gradients on the stability of host-parasitoid systems Oikos 2005 603 613

[42] K.L. Liaw Multistate dynamics: the convergence of an age-by-region population system Environment and Planning A 1980 589 613

[43]

[44] M. Marvá, E. Sánchez, R. Bravo De La Parra, L. Sanz Reduction of slow–fast discrete models coupling migration and demography Journal of Theoretical Biology 2009 371 379

[45] C.J. Mode. Multitype Branching Processes. Theory and Applications. American Elsevier Publishing Co., Inc., New York, 1971.

[46] M. A. Rincón, J.A. Alonso, L. Sanz Supercritical multiregional stochastic models with fast migration Acta Biotheoretica 2009 479 500

[47] A. Rogers Shrinking large-scale population projection models by aggregation and decomposition Environment and Planning A 1976 515 541

[48] A. Rogers. Multiregional Demography, Chichester, New York, 1995.

[49] J. M. Saboia Arima models for birth forecasting Journal of the American Statistical Association 1977 264 270

[50] E. Sánchez, R. Bravo De La Parra, P. Auger Linear discrete models with different time scales Acta Bio. 1995 465 479

[51] L. Sanz, R. Bravo De La Parra Variables Aggregation in Time Varying Discrete Systems Acta Biotheoretica 1998 273 297

[52] L. Sanz, R. Bravo De La Parra Variables aggregation in a time discrete linear model Math. Biosc. 1999 111 146

[53] L. Sanz, R. Bravo De La Parra Time scales in stochastic multiregional models Nonlinear Analysis: Real World Applications 2000 89 122

[54] L. Sanz, R. Bravo De La Parra Time scales in a non autonomous linear discrete model Mathematical Models and Methods in Applied Sciences 2001 1 33

[55] L. Sanz, R. Bravo De La Parra Approximate Reduction Techniques in Population Models with Two Time Scales: Study of the Approximation Acta Biotheoretica 2002 297 322

[56] L. Sanz, A. Blasco, R. Bravo De La Parra Approximate reduction of Galton-Watson processes with two time scales Mathematical Models and Methods in Applied Sciences 491 525 2003

[57] L. Sanz, R. Bravo De La Parra Approximate reduction of multiregional models with environmental stochasticity Mathematical Biosciences 2007 134 154

[58] L. Sanz, R. Bravo De La Parra, E. Sánchez Approximate Reduction of Non-Linear Discrete Models with Two Time Scales Journal of Difference Equations and Applications 2008 607 627

[59] G.W. Stewart, J.I. Guang Sun. Matrix Perturbation Theory, Academic Press, Boston, 1990.

[60] Z. M. Sykes Some stochastic versions of the matrix model for population dynamics J. Amer. Statist. Assoc. 1969 111 130

[61] T. Nguyen-Huu, C. Lett, P. Auger, P. J.C. Poggiale Spatial synchrony in host-parasitoid models using aggregation of variables Mathematical Biosciences 2006 204 221

[62] T. Nguyen-Huu, P. Auger, C. Lett, M. Marvá Emergence of global behaviour in a host-parasitoid model with density-dependent dispersal in a chain of patches Ecological Complexity 2008 9 21

[63] S. Tuljapurkar, S. Orzack Population dynamics in variable environments. I. Long-run growth rates and extinction Theor. Popul. Biol. 1980 314 342

[64] S. Tuljapurkar Demography in stochastic environments. I. Exact distributions of age structure J. Math. Biol. 1984 335 350

[65] S. Tuljapurkar. Population Dynamics in Variable Environments, Springer-Verlag, Berlin, 1990.

[66] S. Tuljapurkar, H. Caswell (eds). Structured-Population Models in Marine, Terrestrial, and Freshwater Systems, Chapman and Hall, New York, 1997.

[67] G. Wang, W. D. Edge, J. O. Wolff Demographic uncertainty in ecological risk assessments Ecological Modelling 2001 95 102

Cité par Sources :