Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_6_a1, author = {J. Salda\~na}, title = {Modelling the {Spread} of {Infectious} {Diseases} in {Complex} {Metapopulations}}, journal = {Mathematical modelling of natural phenomena}, pages = {22--37}, publisher = {mathdoc}, volume = {5}, number = {6}, year = {2010}, doi = {10.1051/mmnp/20105602}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105602/} }
TY - JOUR AU - J. Saldaña TI - Modelling the Spread of Infectious Diseases in Complex Metapopulations JO - Mathematical modelling of natural phenomena PY - 2010 SP - 22 EP - 37 VL - 5 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105602/ DO - 10.1051/mmnp/20105602 LA - en ID - MMNP_2010_5_6_a1 ER -
%0 Journal Article %A J. Saldaña %T Modelling the Spread of Infectious Diseases in Complex Metapopulations %J Mathematical modelling of natural phenomena %D 2010 %P 22-37 %V 5 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105602/ %R 10.1051/mmnp/20105602 %G en %F MMNP_2010_5_6_a1
J. Saldaña. Modelling the Spread of Infectious Diseases in Complex Metapopulations. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 22-37. doi : 10.1051/mmnp/20105602. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105602/
[1] A secular equation for the eigenvalues of a diagonal matrix perturbation Linear Algebra Appl. 1996 49 70
[2] Bosonic reaction-diffusion processes on scale-free networks Phys. Rev. E 2008
, ,[3] A. Berman, R.J. Plemmons. Nonnegative matrices in the mathematical sciences. SIAM, Classics in Applied Mathematics 9, Philadelphia, PA, 1994.
[4] Epidemic spreading in correlated complex networks Phys.Rev.E 2002
,[5] Reaction-diffusion processes and metapopulation models in heterogeneous networks Nat. Phys. 2007 276 282
, ,[6] Invasion Threshold in Heterogeneous Metapopulation Networks Phys. Rev. Lett. 2007
,[7] Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations J. theor. Biol. 2008 450 467
,[8] Utility of R0 as a predictor of disease invasion in structured populations J. R. Soc. Interface 2007 315 324
, , ,[9] Epidemiological models and Lyapunov functions Math. Model. Nat. Phenom. 2007 62 83
, , ,[10] Forecast and control of epidemics in a globalized world PNAS 2004 15124 15129
, ,[11] Analysis and Monte-Carlo simulations of a model for the spread of infectious diseases in heterogeneous metapopulations Phys. Rev. E 2009
, ,[12] M. J. Keeling, P. Rohani. Modeling infectious diseases in humans and animals. Princeton University Press, 2008.
[13] Dynamics of an epidemic model with non-local infections for diseases with latency over a patchy environment J. Math. Biol. 2009
,[14] Migration induced epidemics: dynamics of flux-based multipatch models Phys. Lett. A 2004 256 267
,[15] Random graphs with arbitrary degree distributions and their applications Phys. Rev. E 2001
, ,[16] Mixing patterns in networks Phys. Rev. E 2003
[17] Dynamical response of multi-patch, flux-based models to the input of infected people: Epidemic response to initiated events Phys. Lett. A 2008 5017 5025
, ,[18] A mathematical model for the global spread of influenza Math. Biosci. 1985 3 22
,[19] Continuous-time formulation of reaction-diffusion processes on heterogeneous metapopulations Phys. Rev. E 2008
[20] An epidemic model in a patchy environment Math. Biosci. 2004 97 112
,Cité par Sources :