Voir la notice de l'article provenant de la source EDP Sciences
H. Aatif 1 ; K. Allali 1 ; K. El Karouni 1
@article{10_1051_mmnp_20105508,
author = {H. Aatif and K. Allali and K. El Karouni},
title = {Influence of {Vibrations} on {Convective} {Instability} of {Reaction} {Fronts} in {Porous} {Media}},
journal = {Mathematical modelling of natural phenomena},
pages = {123--137},
publisher = {mathdoc},
volume = {5},
number = {5},
year = {2010},
doi = {10.1051/mmnp/20105508},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105508/}
}
TY - JOUR AU - H. Aatif AU - K. Allali AU - K. El Karouni TI - Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media JO - Mathematical modelling of natural phenomena PY - 2010 SP - 123 EP - 137 VL - 5 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105508/ DO - 10.1051/mmnp/20105508 LA - en ID - 10_1051_mmnp_20105508 ER -
%0 Journal Article %A H. Aatif %A K. Allali %A K. El Karouni %T Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media %J Mathematical modelling of natural phenomena %D 2010 %P 123-137 %V 5 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105508/ %R 10.1051/mmnp/20105508 %G en %F 10_1051_mmnp_20105508
H. Aatif; K. Allali; K. El Karouni. Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 123-137. doi: 10.1051/mmnp/20105508
[1] , , , Convective instability of reaction fronts in porous media Math. Model. Nat. Phenom. 2007 20 39
[2] D. Aronson, H. Weinberger. Nonlinear Diffusion in Population Genetics, Combustion and Nerve Propagation. Lecture Notes in Math Vol. 446, pringer-Verlag, Berlin, 1975.
[3] , , Convection in Hele-Shaw cell with parametric excitation Int. Journal of Non-Linear Mechanics 2005 475 484
[4] , , , Effect of quasiperiodic gravitational modulation on the stability of a heated fluid layer Phys. Rev. E. 2007
[5] N.F. Britton. Reaction-Diffusion Equations and Their Applications to Biology. Academic Press, New York, 1986.
[6] , Shift in the velocity of a front due to a cutoff Phys. Rev. E 1997 2597 2604
[7] , Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts Physica D 2000 1 99
[8] M. Freidlin. Markov Processes and Differential Equations: Asymptotic Problems. Birkhauser, Basel, 1996.
[9] , , , On the vibrational convective instability of a horizontal, binary-mixture layer with Soret effect Journal of Fluid Mechanics 1997 251 269
[10] G.Z. Gershuni, E.M. Zhukhovitskii. The Convective Stability of Incompressible Fluids. Keter Publications, Jerusalem, (1976), 203–230.
[11] , The effects of gravity modulation on the stability of a heated fluid layer J. Fluid Mech. 1970 783 806
[12] , , The effect of gravity modulation on solutal convection during directional solidification Journal of Crystal Growth 1991 713 723
[13] J.D. Murray. Mathematical Biology. Springer-Verlag, Berlin, 1989.
[14] Finite-wavelength instability in a horizontal liquid layer on an oscillating plane J. Fluid Mech. 1997 213 232
[15] , , , Rayleigh-Bénard convection in a vertically oscillated fluid layer Phys. Rev. Lett. 2000 87 90
[16] , Modulation of thermal convection instability Phys. Fluids 1971 1319 1322
[17] , Quasiperiodic patterns in Rayleigh-Bénard convection under gravity modulation Phys. Rev. E 1997 5423 5430
[18] , Reaction-diffusion waves in biology Physics of Life Reviews 2009 267 310
[19] A. Volpert, Vit. Volpert, Vl. Volpert. Traveling wave solutions of parabolic system. American Mathematical Society, Providence, RI, (1994) 448 pp.
[20] , The effects of gravity modulation on the stability of a heated fluid layer J. Fluid Mech. 1970 783 806
[21] , , , Convective stability in the Rayleigh-Bénard and directional solidification problems: high-frequency gravity modulation Phys. Fluids A 1991 2847 2858
[22] Dynamic stabilization of interchange instability of a liquid-gas interface Phys. Rev. Lett. 1970 444 446
[23] , Instability of a liquid film flow over a vibrating inclined plane J. Fluid Mech. 1995 391 407
[24] Ya.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze. The Mathematical Theory of Combustion and Explosions. Consultants Bureau, Plenum, New York, 1985.
[25] , The theory of thermal propagation of flames Zh. Fiz. Khim. 1938 100 105
[26] Action of high-frequency vibration on filtration convection J. Appl. Mech. Tech. Phys. 1992 83 86
[27] , Filtration convection in a high-frequency vibration field J. Appl. Mech. Tech. Phys. 1999 379 385
Cité par Sources :