Voir la notice de l'article provenant de la source EDP Sciences
H. Aatif 1 ; K. Allali 1 ; K. El Karouni 1
@article{MMNP_2010_5_5_a7, author = {H. Aatif and K. Allali and K. El Karouni}, title = {Influence of {Vibrations} on {Convective} {Instability} of {Reaction} {Fronts} in {Porous} {Media}}, journal = {Mathematical modelling of natural phenomena}, pages = {123--137}, publisher = {mathdoc}, volume = {5}, number = {5}, year = {2010}, doi = {10.1051/mmnp/20105508}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105508/} }
TY - JOUR AU - H. Aatif AU - K. Allali AU - K. El Karouni TI - Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media JO - Mathematical modelling of natural phenomena PY - 2010 SP - 123 EP - 137 VL - 5 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105508/ DO - 10.1051/mmnp/20105508 LA - en ID - MMNP_2010_5_5_a7 ER -
%0 Journal Article %A H. Aatif %A K. Allali %A K. El Karouni %T Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media %J Mathematical modelling of natural phenomena %D 2010 %P 123-137 %V 5 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105508/ %R 10.1051/mmnp/20105508 %G en %F MMNP_2010_5_5_a7
H. Aatif; K. Allali; K. El Karouni. Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 123-137. doi : 10.1051/mmnp/20105508. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105508/
[1] Convective instability of reaction fronts in porous media Math. Model. Nat. Phenom. 2007 20 39
, , ,[2] D. Aronson, H. Weinberger. Nonlinear Diffusion in Population Genetics, Combustion and Nerve Propagation. Lecture Notes in Math Vol. 446, pringer-Verlag, Berlin, 1975.
[3] Convection in Hele-Shaw cell with parametric excitation Int. Journal of Non-Linear Mechanics 2005 475 484
, ,[4] Effect of quasiperiodic gravitational modulation on the stability of a heated fluid layer Phys. Rev. E. 2007
, , ,[5] N.F. Britton. Reaction-Diffusion Equations and Their Applications to Biology. Academic Press, New York, 1986.
[6] Shift in the velocity of a front due to a cutoff Phys. Rev. E 1997 2597 2604
,[7] Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts Physica D 2000 1 99
,[8] M. Freidlin. Markov Processes and Differential Equations: Asymptotic Problems. Birkhauser, Basel, 1996.
[9] On the vibrational convective instability of a horizontal, binary-mixture layer with Soret effect Journal of Fluid Mechanics 1997 251 269
, , ,[10] G.Z. Gershuni, E.M. Zhukhovitskii. The Convective Stability of Incompressible Fluids. Keter Publications, Jerusalem, (1976), 203–230.
[11] The effects of gravity modulation on the stability of a heated fluid layer J. Fluid Mech. 1970 783 806
,[12] The effect of gravity modulation on solutal convection during directional solidification Journal of Crystal Growth 1991 713 723
, ,[13] J.D. Murray. Mathematical Biology. Springer-Verlag, Berlin, 1989.
[14] Finite-wavelength instability in a horizontal liquid layer on an oscillating plane J. Fluid Mech. 1997 213 232
[15] Rayleigh-Bénard convection in a vertically oscillated fluid layer Phys. Rev. Lett. 2000 87 90
, , ,[16] Modulation of thermal convection instability Phys. Fluids 1971 1319 1322
,[17] Quasiperiodic patterns in Rayleigh-Bénard convection under gravity modulation Phys. Rev. E 1997 5423 5430
,[18] Reaction-diffusion waves in biology Physics of Life Reviews 2009 267 310
,[19] A. Volpert, Vit. Volpert, Vl. Volpert. Traveling wave solutions of parabolic system. American Mathematical Society, Providence, RI, (1994) 448 pp.
[20] The effects of gravity modulation on the stability of a heated fluid layer J. Fluid Mech. 1970 783 806
,[21] Convective stability in the Rayleigh-Bénard and directional solidification problems: high-frequency gravity modulation Phys. Fluids A 1991 2847 2858
, , ,[22] Dynamic stabilization of interchange instability of a liquid-gas interface Phys. Rev. Lett. 1970 444 446
[23] Instability of a liquid film flow over a vibrating inclined plane J. Fluid Mech. 1995 391 407
,[24] Ya.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze. The Mathematical Theory of Combustion and Explosions. Consultants Bureau, Plenum, New York, 1985.
[25] The theory of thermal propagation of flames Zh. Fiz. Khim. 1938 100 105
,[26] Action of high-frequency vibration on filtration convection J. Appl. Mech. Tech. Phys. 1992 83 86
[27] Filtration convection in a high-frequency vibration field J. Appl. Mech. Tech. Phys. 1999 379 385
,Cité par Sources :