Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 123-137.

Voir la notice de l'article provenant de la source EDP Sciences

The aim of this paper is to study the effect of vibrations on convective instability of reaction fronts in porous media. The model contains reaction-diffusion equations coupled with the Darcy equation. Linear stability analysis is carried out and the convective instability boundary is found. The results are compared with direct numerical simulations.
DOI : 10.1051/mmnp/20105508

H. Aatif 1 ; K. Allali 1 ; K. El Karouni 1

1 Department of Mathematics, University Hassan II, M.A.C. Laboratory, P.O. Box 146, FST-Mohammadia, Morocco
@article{MMNP_2010_5_5_a7,
     author = {H. Aatif and K. Allali and K. El Karouni},
     title = {Influence of {Vibrations} on {Convective} {Instability} of {Reaction} {Fronts} in {Porous} {Media}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {123--137},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {2010},
     doi = {10.1051/mmnp/20105508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105508/}
}
TY  - JOUR
AU  - H. Aatif
AU  - K. Allali
AU  - K. El Karouni
TI  - Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 123
EP  - 137
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105508/
DO  - 10.1051/mmnp/20105508
LA  - en
ID  - MMNP_2010_5_5_a7
ER  - 
%0 Journal Article
%A H. Aatif
%A K. Allali
%A K. El Karouni
%T Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media
%J Mathematical modelling of natural phenomena
%D 2010
%P 123-137
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105508/
%R 10.1051/mmnp/20105508
%G en
%F MMNP_2010_5_5_a7
H. Aatif; K. Allali; K. El Karouni. Influence of Vibrations on Convective Instability of Reaction Fronts in Porous Media. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 123-137. doi : 10.1051/mmnp/20105508. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105508/

[1] K. Allali, A. Ducrot, A. Taik, V. Volpert Convective instability of reaction fronts in porous media Math. Model. Nat. Phenom. 2007 20 39

[2] D. Aronson, H. Weinberger. Nonlinear Diffusion in Population Genetics, Combustion and Nerve Propagation. Lecture Notes in Math Vol. 446, pringer-Verlag, Berlin, 1975.

[3] B.S. Bhadauria, P.K. Bhatia, L. Debnath Convection in Hele-Shaw cell with parametric excitation Int. Journal of Non-Linear Mechanics 2005 475 484

[4] T. Boulal, S. Aniss, M. Belhaq, R. Rand Effect of quasiperiodic gravitational modulation on the stability of a heated fluid layer Phys. Rev. E. 2007

[5] N.F. Britton. Reaction-Diffusion Equations and Their Applications to Biology. Academic Press, New York, 1986.

[6] E. Brunet, B. Derrida Shift in the velocity of a front due to a cutoff Phys. Rev. E 1997 2597 2604

[7] U. Ebert, W. Van Saarloos Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts Physica D 2000 1 99

[8] M. Freidlin. Markov Processes and Differential Equations: Asymptotic Problems. Birkhauser, Basel, 1996.

[9] G.Z. Gershuni, A.K. Kolesnikov, J.C. Legros, B.I. Myznikova On the vibrational convective instability of a horizontal, binary-mixture layer with Soret effect Journal of Fluid Mechanics 1997 251 269

[10] G.Z. Gershuni, E.M. Zhukhovitskii. The Convective Stability of Incompressible Fluids. Keter Publications, Jerusalem, (1976), 203–230.

[11] P.M. Gresho, R.L. Sani The effects of gravity modulation on the stability of a heated fluid layer J. Fluid Mech. 1970 783 806

[12] B.T. Murray, S.R. Coriell, G.B. Mcfadden The effect of gravity modulation on solutal convection during directional solidification Journal of Crystal Growth 1991 713 723

[13] J.D. Murray. Mathematical Biology. Springer-Verlag, Berlin, 1989.

[14] A.C. Or Finite-wavelength instability in a horizontal liquid layer on an oscillating plane J. Fluid Mech. 1997 213 232

[15] J.L. Rogers, M.F. Schatz, J.L. Bougie, J.B. Swift Rayleigh-Bénard convection in a vertically oscillated fluid layer Phys. Rev. Lett. 2000 87 90

[16] S. Rosenblat, G.A. Tanaka Modulation of thermal convection instability Phys. Fluids 1971 1319 1322

[17] U.E. Volmar, H.W. Muller Quasiperiodic patterns in Rayleigh-Bénard convection under gravity modulation Phys. Rev. E 1997 5423 5430

[18] V. Volpert, S. Petrovskii Reaction-diffusion waves in biology Physics of Life Reviews 2009 267 310

[19] A. Volpert, Vit. Volpert, Vl. Volpert. Traveling wave solutions of parabolic system. American Mathematical Society, Providence, RI, (1994) 448 pp.

[20] M. Wadih, B. Roux The effects of gravity modulation on the stability of a heated fluid layer J. Fluid Mech. 1970 783 806

[21] A.A. Wheeler, G.B. Mcfadden, B.T. Murray, S.R. Coriell Convective stability in the Rayleigh-Bénard and directional solidification problems: high-frequency gravity modulation Phys. Fluids A 1991 2847 2858

[22] G.H. Wolf Dynamic stabilization of interchange instability of a liquid-gas interface Phys. Rev. Lett. 1970 444 446

[23] D.R. Woods, S.P. Lin Instability of a liquid film flow over a vibrating inclined plane J. Fluid Mech. 1995 391 407

[24] Ya.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze. The Mathematical Theory of Combustion and Explosions. Consultants Bureau, Plenum, New York, 1985.

[25] Ya.B. Zeldovich, D.A. Frank-Kamenetsky The theory of thermal propagation of flames Zh. Fiz. Khim. 1938 100 105

[26] S.M. Zenkovskaya Action of high-frequency vibration on filtration convection J. Appl. Mech. Tech. Phys. 1992 83 86

[27] S.M. Zenkovskaya, T.N. Rogovenko Filtration convection in a high-frequency vibration field J. Appl. Mech. Tech. Phys. 1999 379 385

Cité par Sources :