Spatiotemporal Dynamics in a Spatial Plankton System
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 102-122.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we investigate the complex dynamics of a spatial plankton-fish system with Holling type III functional responses. We have carried out the analytical study for both one and two dimensional system in details and found out a condition for diffusive instability of a locally stable equilibrium. Furthermore, we present a theoretical analysis of processes of pattern formation that involves organism distribution and their interaction of spatially distributed population with local diffusion. The results of numerical simulations reveal that, on increasing the value of the fish predation rates, the sequences spots → spot-stripe mixtures → stripes → hole-stripe mixtures holes → wave pattern is observed. Our study shows that the spatially extended model system has not only more complex dynamic patterns in the space, but also has spiral waves.
DOI : 10.1051/mmnp/20105507

R. K. Upadhyay 1 ; W. Wang 2, 3 ; N. K. Thakur 1

1 Department of Applied Mathematics, Indian School of Mines, Dhanbad, 826004, India
2 School of Mathematical Sciences, Fudan University, Shanghai, 200433 P.R. China
3 School of Mathematics and Information Science, Wenzhou University, Wenzhou, Zhejiang, 325035 P.R.China
@article{MMNP_2010_5_5_a6,
     author = {R. K. Upadhyay and W. Wang and N. K. Thakur},
     title = {Spatiotemporal {Dynamics} in a {Spatial} {Plankton} {System}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {102--122},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {2010},
     doi = {10.1051/mmnp/20105507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105507/}
}
TY  - JOUR
AU  - R. K. Upadhyay
AU  - W. Wang
AU  - N. K. Thakur
TI  - Spatiotemporal Dynamics in a Spatial Plankton System
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 102
EP  - 122
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105507/
DO  - 10.1051/mmnp/20105507
LA  - en
ID  - MMNP_2010_5_5_a6
ER  - 
%0 Journal Article
%A R. K. Upadhyay
%A W. Wang
%A N. K. Thakur
%T Spatiotemporal Dynamics in a Spatial Plankton System
%J Mathematical modelling of natural phenomena
%D 2010
%P 102-122
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105507/
%R 10.1051/mmnp/20105507
%G en
%F MMNP_2010_5_5_a6
R. K. Upadhyay; W. Wang; N. K. Thakur. Spatiotemporal Dynamics in a Spatial Plankton System. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 102-122. doi : 10.1051/mmnp/20105507. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105507/

[1] M. Abbott. Phytoplankton patchiness: ecological implications and observation methods. In: Patch dynamics (Levin, S. A., Powell, T. M. and Steele, J. H., eds.), Lecture Notes in Biomath., 96 (1993), 37-49.

[2] A. D. Bazykin, A.I. Khibnik, B. Krauskopf, B. Nonlinear dynamics of interacting populations. World Scientific, Singapore, 1998.

[3] B. Chen, M. Wang Qualitative analysis for a diffusive predator-prey model Comp. Math. with Appl. 2008 339 355

[4] B. Dubey, J. Hussain Modelling the interaction of two biological species in polluted environment J. Math. Anal. Appl. 2000 58 79

[5] M. J. R. Fasham The statistical and mathematical analysis of plankton patchiness Oceanogr. Mar. Biol. Annu. Rev. 1978 43 79

[6] C. Fu, R. Mohn, L.P. Fanning Why the Atlantic cod stock off eastern Nova Scotia has not recovered Can. J. Fish. Aquat. Sci. 2001 1613 1623

[7] H. Gao, H. Wei, W. Sun, X. Zhai Functions used in biological models and their influence on simulations Indian J. Marine Sci. 2000 230 237

[8] C.H. Greene, E. A. Widder, M. J. Youngbluth, A. Tamse, G. E. Johnson The migration behavior, fine structure and bioluminescent activity of krill sound-scattering layers Limnology and Oceanography 1992 650 658

[9] V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W. Mooij, S. Railsback, H. Thulke, J. Weiner, T. Wiegand, D. Deangelis Pattern-oriented modeling of agent-based complex systems: lessons from ecology Science 2005 987 991

[10] A.C. Hammer, J.W. Pitchford The role of mixotrophy in plankton bloom dynamics and the consequences for productivity ICES J. Marine Sci. 2005 833 840

[11] T.K. Kar, H. Matsuda Global dynamics and controllability of a harvested prey-predator system with Holling type III functional response Nonlinear Anal.: Hybrid Systems 2007 59 67

[12] M. Liermann, R. Hilborn Depensation: Evidence, models and implications Fish and Fisheries 2001 33 58

[13] C. Loehle Challenges of ecological complexity Ecological Complexity 2004 3 6

[14] D. Ludwig, D. Jones, C. Holling Qualitative analysis of an insect outbreak system: the spruce budworm and forest J. Animal Eco. 1978 315 332

[15] F. Mackas, C. M. Boyd Spectral analysis of zooplankton spatial heterogeneity Science 1979 62 64

[16] K. G. Magnusson, O.K. Palsson Predator-prey interactions of cod and capelin in Icelandic waters ICES Marine Science Symposium 1991 153 170

[17] H. Malchow Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics Proc. Roy. Soc. Lond. Series B 1993 103 109

[18] H. Malchow Nonlinear plankton dynamics and pattern formation in an ecohydrodynamic model system J. Marine Systems 1996 193 202

[19] H. Malchow Non-equilibrium spatio-temporal patterns in models of non-linear plankton dynamics Freshwater Biol. 2000 239 251

[20] H. Malchow, S. V. Petrovskii, A. B. Medvinsky Numerical study of plankton-fish dynamics in a spatially structured and noisy environment Ecol. Model. 2002 247 255

[21] H. Malchow, S. V. Petrovskii, E. Venturino. Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models and Simulation, CRC Press, UK, 2008.

[22] R. M. May. Stability and Complexity in model ecosystems. Princeton University press, Princeton, NJ. 1973.

[23] A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow, B.-L. Li Spatiotemporal complexity of plankton and fish dynamics SIAM Review 2002 311 370

[24] A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, E. Venturino, H. Malchow Chaos and regular dynamics in a model multi-habitat plankton-fish community J. Biosciences 2001 109 120

[25] A. B. Medvinsky, I. A. Tikhonova, R. R. Aliev, B. -L. Li, Z. S. Lin, H. Malchow Patchy environment as a factor of complex plankton dynamics Phys. Rev. E 2001 021915 021917

[26] L. Michaelis, M. L. Menten Die Kinetik der Invertinwirkung Biochem. Z. 1913 333 369

[27] A. Morozov Emergence of Holling type III zooplankton functional response: Bringing together field evidence and mathematical modelling J. Theor. Biol. 2010 45 54

[28] A. Morozov, E. Arashkevich, M. Reigstad, S. Falk-Petersen Influence of spatial heterogeneity on the type of zooplankton functional response: A study based on field observations Deep-Sea Research II 2008 2285 2291

[29] J. D. Murray. Mathematical biology. Springer-Verlag, New York, 1989.

[30] K. T. Nilssen, O.-P. Pedersen, L. Folkow, T. Haug Food consumption estimates of Barents Sea harp seals NAMMCO Scientific Publications 2000 9 27

[31] A. Okubo. Diffusion and ecological problems: mathematical models. Springer-Verlag, Berlin. 1980.

[32] M. Pascual Diffusion-induced chaos in a spatial predator-prey system Proc. Royal Soc. B 1993 1 7

[33] S. V. Petrovskii, H. Malchow Critical phenomena in plankton communities: KISS model revisited Nonlinear Anal.: RWA 2000 37 51

[34] S. V. Petrovskii, H. Malchow Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics Theor. Popul. Biol. 2001 157 174

[35] J. -C. Poggiale, M. Gauduchon, P. Auger Enrichment paradox induced by spatial heterogeneity in a phytoplankton- zooplankton system Math. Model. Natural Phenom. 2008 87 102

[36] L. A. Real The kinetic of functional response Am. Nat. 1977 289 300

[37] M. Scheffer. Ecology of shallow lakes. Chapman and Hall, London. 1998.

[38] M. Scheffer, R. J. De Boer Implications of spatial heterogeneity for the paradox of enrichment Ecology 1996 2270 2277

[39] T. Schweder, G. S. Hagen, E. Hatlebakk Direct and indirect effects of minke whale abundance on cod and herring fisheries: A scenario experiment for the Greater Barents Sea NAMMCO Scientific Publications 2000 120 133

[40] L. A. Segel, J. L. Jackson Dissipative structure: An explanation and an ecological example J. Theo. Biol. 1972 545 559

[41] J. A. Sherratt, B. T. Eagan, M. A. Lewis Oscillations and chaos behind predator-prey invasion: mathematical artifact or ecological reality Phil. Trans. Roy. Soc. Lond. B 1997 21 38

[42] J. A. Sherratt, M. A. Lewis, A. C. Fowler Ecological chaos in the wake of invasion PNAS 1995 2524 2528

[43] J. H. Steele. Spatial pattern in plankton communities. Plenum Press, New York, 1978.

[44] J. H. Steele, E. W. Henderson A simple plankton model Am. Nat. 1981 676 691

[45] J. H. Steele, E. W. Henderson A simple model for plankton patchiness J. Plankton Research 1992 1397 1403

[46] J. H. Steele, E. W. Henderson The role of predation in plankton models J. Plankton Research 1992 157 172

[47] J. E. Truscott, J. Brindley Equilibria, stability and excitability in a general class of plankton population models Phil. Trans. Roy. Soc. Lond. A 1994 703 718

[48] J. E. Truscott, J. Brindley Ocean plankton populations as excitable media Bull. Math. Biol. 1994 981 998

[49] P. Turchin. Complex population dynamics: a theoretical/empirical Synthesis. Princeton University Press, Princeton, NJ, 2003.

[50] R. K. Upadhyay, N. Kumari, V. Rai Wave of chaos and pattern formation in a spatial predator-prey system with Holling type IV functional response Math. Model. Natural Phenom. 2008 71 95

[51] R. K. Upadhyay, N. Kumari, V. Rai Wave of chaos in a diffusive system: Generating realistic patterns of patchiness in plankton-fish dynamics Chaos Solit. Fract. 2009 262 276

[52] R. K. Upadhyay, N. K. Thakur, B. Dubey Nonlinear non-equilibrium pattern formation in a spatial aquatic system: Effect of fish predation J. Biol. Sys. 2010 129 159

[53] J. Xiao, H. Li, J. Yang, G. Hu Chaotic Turing pattern formation in spatiotemporal systems Frontier of Physics in China 2006 204 208

Cité par Sources :