Existence of Waves for a Nonlocal Reaction-Diffusion Equation
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 80-101.

Voir la notice de l'article provenant de la source EDP Sciences

In this work we study a nonlocal reaction-diffusion equation arising in population dynamics. The integral term in the nonlinearity describes nonlocal stimulation of reproduction. We prove existence of travelling wave solutions by the Leray-Schauder method using topological degree for Fredholm and proper operators and special a priori estimates of solutions in weighted Hölder spaces.
DOI : 10.1051/mmnp/20105506

I. Demin 1 ; V. Volpert 1

1 Institut Camille Jordan, University Lyon 1, UMR 5208 CNRS 69622 Villeurbanne, France
@article{MMNP_2010_5_5_a5,
     author = {I. Demin and V. Volpert},
     title = {Existence of {Waves} for a {Nonlocal} {Reaction-Diffusion} {Equation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {80--101},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {2010},
     doi = {10.1051/mmnp/20105506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105506/}
}
TY  - JOUR
AU  - I. Demin
AU  - V. Volpert
TI  - Existence of Waves for a Nonlocal Reaction-Diffusion Equation
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 80
EP  - 101
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105506/
DO  - 10.1051/mmnp/20105506
LA  - en
ID  - MMNP_2010_5_5_a5
ER  - 
%0 Journal Article
%A I. Demin
%A V. Volpert
%T Existence of Waves for a Nonlocal Reaction-Diffusion Equation
%J Mathematical modelling of natural phenomena
%D 2010
%P 80-101
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105506/
%R 10.1051/mmnp/20105506
%G en
%F MMNP_2010_5_5_a5
I. Demin; V. Volpert. Existence of Waves for a Nonlocal Reaction-Diffusion Equation. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 5, pp. 80-101. doi : 10.1051/mmnp/20105506. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105506/

[1] S. Ai Traveling wave fronts for generalized Fisher equations with spatio-temporal delays J. Differential Equations 2007 104 133

[2] A. Apreutesei, A. Ducrot, V. Volpert Competition of species with intra-specific competition Math. Model. Nat. Phenom. 2008 1 27

[3] N. Apreutesei, A. Ducrot, V. Volpert Travelling waves for integro-differential equations in population dynamics Discrete Cont. Dyn. Syst. Ser. B 2009 541 561

[4] N.F. Britton Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model SIAM J. Appl. Math. 1990 1663 1688

[5] A. Ducrot Travelling wave solutions for a scalar age-structured equation Discrete Contin. Dyn. Syst. Ser. B 2007 251 273

[6] P. C. Fife, J. B. Mcleod The approach of solutions of nonlinear diffusion equations to travelling wave solutions Bull. Amer. Math. Soc. 1975 1076 1078

[7] A. Friedman. Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffs, 1964.

[8] S. Génieys, V. Volpert, P. Auger Pattern and waves for a model in population dynamics with nonlocal consumption of resources Math. Model. Nat. Phenom. 2006 63 80

[9] S. A. Gourley Travelling front solutions of a nonlocal Fisher equation J. Math. Biol. 2000 272 284

[10] Ya. I. Kanel The behavior of solutions of the Cauchy problem when the time tends to infinity, in the case of quasilinear equations arising in the theory of combustion Soviet Math. Dokl. 1960 533 536

[11] R. Lefever, O. Lejeune On the origin of tiger bush Bul. Math. Biol. 1997 263 294

[12] A.I. Volpert, V.A. Volpert Applications of the rotation theory of vector fields to the study of wave solutions of parabolic equations Trans. Moscow Math. Soc. 1990 59 108

[13] A. Volpert, Vl. Volpert, Vit. Volpert. Travelling wave solutions of parabolic systems. 1994, AMS, Providence.

[14] V. Volpert, A. Volpert, J.F. Collet Topological degree for elliptic operators in unbounded cylinders Adv. Diff. Eq. 1999 777 812

[15] V. Volpert, A. Volpert Properness and topological degree for general elliptic operators Abstract and Applied Analysis 2003 129 181

[16] A. Volpert, V. Volpert Normal solvability of general linear elliptic problems Abstract and Applied Analysis 2005 733 756

[17] Y. Wang, J. Yin Travelling waves for a biological reaction diffusion model with spatio- temporal delay J. Math. Anal. Appl. 2007 1400 1409

[18] Z.C. Wang, W.T. Li, S. Ruan Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays J. Diff. Equations 2006 185 232

Cité par Sources :